• Graduate program
    • Why Tinbergen Institute?
    • Program Structure
    • Courses
    • Course Registration
    • Recent PhD Placements
    • Admissions
    • Facilities
  • Research
  • News
  • Events
    • Events Calendar
    • Tinbergen Institute Lectures
    • Annual Tinbergen Institute Conference
    • Events Archive
    • Summer School
      • Crash Course in Experimental Economics
      • Behavioral Macro and Complexity
      • Introduction in Genome-Wide Data Analysis
      • Econometric Methods for Forecasting and Data Science
  • Times
Home | Events Archive | Depths for Scatter and Shape Parameters
Seminar

Depths for Scatter and Shape Parameters


  • Series
    Array
  • Speaker(s)
    Germain van Bever (University of Namur, Belgium)
  • Field
    Econometrics
  • Location
    Erasmus University, Mandeville Building, Room T3-14
    Rotterdam
  • Date and time

    November 14, 2019
    16:00 - 17:30

Abstract

For scatter matrices, the introduced concept, coined halfspace scatter depth, extends the one from Chen, Gao and Ren (2018) to the non-centered case, and is in the same spirit as the one in Zhang (2002). Two concepts of depth are presented for shape parameters. The first one can be seen as the companion concept to halfspace scatter depth. The second one, of a sign nature, is the depth-based counterpart of the Tyler's M-estimate of shape.

Rather than focusing, as in earlier works, on deepest scatter and shape matrices, I will investigate the properties of the proposed depths and of the corresponding depth regions. This will be done under minimal assumptions. Interestingly, fully understanding these depth functions will require considering different geometries/topologies on the space of (scatter or shape) matrices. I will also discuss, in the spirit of Zuo and Serfling (2000), the structural properties a scatter depth should satisfy, and investigate whether or not these are met by the proposed depths. Finally, I will show how these depths can be used in detecting outliers in time series financial data.

This talk is based on the two papers Paindaveine and Van Bever (2018) & Paindaveine and Van Bever (2019).