• Graduate program
    • Why Tinbergen Institute?
    • Program Structure
    • Courses
    • Course Registration
    • Recent PhD Placements
    • Admissions
    • Facilities
  • Research
  • News
  • Events
    • Events Calendar
    • Tinbergen Institute Lectures
    • Annual Tinbergen Institute Conference
    • Events Archive
    • Summer School
      • Inequalities in Health and Healthcare
      • Research on Productivity, Trade, and Growth
      • Behavioral Macro and Complexity
      • Business Data Science Summer School Program
  • Summer School
  • Alumni
  • Times
Home | Events Archive | A Contextual Bandit Algorithm for Linear Mixed Effects Models
Master's Thesis defense

A Contextual Bandit Algorithm for Linear Mixed Effects Models


  • Series
    Array
  • Speaker
    Hong Deng
  • Location
    Online
  • Date and time

    August 28, 2020
    15:00 - 16:00

The thesis generalizes the linear contextual bandit problems for potentially individual-clustered data. Upper confidence bound-typed bandit algorithms are widely used for contextually dependent decisions, such as customized recommender systems; however, the correlations of observations within individuals are rarely discussed in prior work. To allow for the presence of individual heterogeneity, linear mixed effects models are imposed for the reward generation, and a learning algorithm taking into account individual heterogeneity, called LIME-UCB, is proposed. The algorithm constructs the confidence interval by combing information across and within individuals, and achieves efficient learning for data with high level of individual heterogeneity.