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Abstract

This paper studies the identification and estimation of the optimal linear approximation of a

structural regression function. The parameter in the linear approximation is called the Optimal

Linear Instrumental Variables Approximation (OLIVA). This paper shows that a necessary condition

for standard inference on the OLIVA is also suffi cient for the existence of an IV estimand in a linear

model. The instrument in the IV estimand is unknown and may not be identified. A Two-Step

IV (TSIV) estimator based on Tikhonov regularization is proposed, which can be implemented

by standard regression routines. We establish the asymptotic normality of the TSIV estimator

assuming neither completeness nor identification of the instrument. As an important application of

our analysis, we robustify the classical Hausman test for exogeneity against misspecification of the

linear structural model. We also discuss extensions to weighted least squares criteria. Monte Carlo

simulations suggest an excellent finite sample performance for the proposed inferences. Finally, in

an empirical application estimating the elasticity of intertemporal substitution (EIS) with US data,

we obtain TSIV estimates that are much larger than their standard IV counterparts, with our robust

Hausman test failing to reject the null hypothesis of exogeneity of real interest rates.
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1 Introduction

The Ordinary Least Squares (OLS) estimator has an appealing nonparametric interpretation– it pro-

vides the optimal linear approximation (in a mean-square error sense) to the true regression function.

That is, the OLS estimand is a meaningful and easily interpretable parameter under misspecification

of the linear model. Unfortunately, except in special circumstances (such as with random assignment),

this parameter does not have a causal interpretation. Commonly used estimands based on Instrumental

Variables (IV) do have a causal interpretation (see, e.g., Imbens and Angrist (1994)), but they do not

share with OLS the appealing nonparametric interpretation (see, e.g., Imbens, Angrist and Graddy

(2000)). The main goal of our paper is to fill this gap and to propose an IV estimand that has the

same nonparametric interpretation as OLS, but under endogeneity.

The parameter of interest is thus the vector of slopes in the optimal linear approximation of the

structural regression function. We call this parameter the Optimal Linear IV Approximation (OLIVA).

We investigate regular identification of the OLIVA, i.e. identification with a finite effi ciency bound,

based on the results in Severini and Tripathi (2012). The main contribution of our paper is to show

that a necessary condition for regular identification of the OLIVA is also suffi cient for existence of an

IV estimand in a linear structural regression. That is, we show that, under a minimal condition for

standard inference on the OLIVA, it is possible to obtain an IV estimator for it.

The identification result is constructive and leads to a Two-Step IV (TSIV) estimation strategy.

The necessary condition for regular identification is a conditional moment restriction that is used to

estimate a suitable instrument in a first step. The second step is simply a standard linear IV estimator

with the estimated instrument from the first step. The situation is somewhat analogous to optimal

IV (see, e.g., Robinson (1976) and Newey (1990)), but more diffi cult due to the lack of identification

of the first step and the first step problem being statistically harder than a nonparametric regression

problem. To select an instrument among potentially many candidates, we use Tikhonov regularization,

combined with a sieve approach to obtain a Penalized Sieve Minimum Distance (PSMD) first step

estimator (cf. Chen and Pouzo (2012)). The instrument choice based on Tikhonov is statistically

and empirically justified. Statistically, a Tikhonov instrument exhibits a certain suffi ciency property

explained below. Empirically, the resulting PSMD estimator can be computed with standard regression

routines. The TSIV estimator is shown to be asymptotically normal and to perform favorably in

simulations when compared to alternative estimators, being competitive with the oracle IV under

linearity of the structural model, while robustifying it otherwise.

An important application of our approach is to a Hausman test for exogeneity that is robust to

misspecification of the linear model. This robustness comes from our TSIV being nonparametrically

comparable to OLS under exogeneity. The robust Hausman test is a standard t-test in an augmented

regression that does not require any correction for standard errors for its validity, as we show below.

Lochner and Moretti (2015) consider a different exogeneity test comparing the classical IV estimator

with a weighted OLS estimator when the endogenous variable is discrete. In contrast, our test com-

pares the standard OLS with our TSIV estimator—more in the spirit of the original Hausman (1978)’s

exogeneity test—while allowing for general endogenous variables (continuous, discrete or mixed). Monte
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Carlo simulations confirm the robustness of the proposed Hausman test, and the inability of the stan-

dard Hausman test to control the empirical size under misspecification of the linear model.

Our paper contributes to two different strands of the literature. The first strand is the nonparametric

IV literature; see, e.g., Newey and Powell (2003), Ai and Chen (2003), Hall and Horowitz (2005),

Blundell, Chen and Kristensen (2007), Horowitz (2007), Horowitz (2011), Darolles, Fan, Florens and

Renault (2011), Santos (2012), Chetverikov and Wilhem (2017), and Freyberger (2017), among others.

Severini and Tripathi (2006, 2012) discuss identification and effi ciency of linear functionals of the

structural function without assuming completeness. Their results on regular identification are adapted

to the OLIVA below. Santos (2011) establishes regular asymptotic normality for weighted integrals of

the structural function in nonparametric IV, also allowing for lack of nonparametric identification of the

structural function. Blundell and Horowitz (2007) develop a nonparametric test of exogeneity under

the maintained assumption of nonparametric identification. The OLIVA functional was not considered

in Severini and Tripathi (2006, 2012) or Santos (2011), and the semiparametric robust Hausman test

complements the nonparametric test of Blundell and Horowitz (2007).

Our paper is also related to the Causal IV literature that interprets IV nonparametrically as a

Local Average Treatment Effect (LATE); see Imbens and Angrist (1994). A forerunner of our paper is

Abadie (2003). He defines the Complier Causal Response Function and its best linear approximation in

the presence of covariates. He also develops two-step inference for the linear approximation coeffi cients

when the endogenous variable is binary. Within this binary case, we show that the OLIVA’s slope

parameter is the IV estimand resulting from using the propensity score as instrument, a recommended

IV estimator in the literature (see Imbens and Angrist (1994) and pg. 623 in Wooldridge (2002)). Our

asymptotic results for the binary endogenous case can thus be viewed as extensions of existing methods

(such as, e.g., Theorem 3 in Imbens and Angrist (1994)) to a nonparametrically estimated propensity

score.

The main theoretical contributions of this paper are thus the interpretation of the regular identi-

fication of the OLIVA as existence of an IV estimand, the asymptotic normality of a TSIV estimator,

and the robust Hausman test. The identification, estimation and exogeneity test of this paper are all

robust to the lack of the identification of the structural function (i.e. lack of completeness) and lack

of identification of the first step instrument. Furthermore, the proposed methods are also robust to

misspecification of linear model, sharing the nonparametric robustness of OLS, but in a setting with

endogenous regressors.

We illustrate the utility of our methods with an empirical application estimating the elasticity of

intertemporal substitution (EIS) with quarterly US data, revisiting previous work by Yogo (2004). If

the structural relationship between consumption growth and interest rates is linear, then the TSIV

and standard IV estimands should be the same. In contrast, we obtain a TSIV estimate much larger

than the standard IV estimate, with a similar level of precision, thereby suggesting that nonlinearities

matter in this application. The TSIV and OLS estimates are rather close, and the robust Hausman

test fails to reject the null hypothesis of exogeneity of real interest rates.

The rest of the paper is organized as follows. Section 2 defines formally the parameter of inter-

est and its regular identification. Section 3 proposes a PSMD first step and establishes the asymp-
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totic normality of the TSIV. Section 4 derives the asymptotic properties of the robust Hausman test

for exogeneity. The finite sample performance of the TSIV and the robust Hausman test is inves-

tigated in Section 5. Finally, Section 6 reports the results of our empirical application to the EIS.

Appendix A presents notation, assumptions and some preliminary results that are needed for the

main proofs in Appendix B. A Supplemental Appendix contains further simulation results, including

extensive sensitivity analysis.

2 Optimal Linear Instrumental Variables Approximations

2.1 Nonparametric Interpretation

Let the dependent variable Y be related to the p−dimensional vector X through the equation

Y = g(X) + ε, (1)

where E[ε|Z] = 0 almost surely (a.s), for a q−dimensional vector of instruments Z.
The OLIVA parameter β solves, for g satisfying (1),

β = arg min
γ∈Rp

E[
(
g(X)− γ′X

)2
], (2)

where henceforth A′ denotes the transpose of A. Note that X may (and in general, will) contain an

intercept. For extensions to weighted least squares versions of (2) see Section 3.5.

If E[XX ′] is positive definite, then

β ≡ β(g) = E[XX ′]−1E[Xg(X)]. (3)

When X is exogenous, i.e. E[ε|X] = 0 a.s., the function g(·) is the regression function E[Y |X = ·]
and β is identified and consistently estimated by OLS under mild conditions. In many economic

applications, however, X is endogenous, i.e. E[ε|X] 6= 0, and identification and estimation of (3)

becomes a more diffi cult issue than in the exogenous case, albeit less diffi cult than identification and

estimation of the structural function g in (1). Of course, if g is linear g(x) = γ′0x, then β = γ0.

We first investigate regular identification of β in (1)-(2). The terminology of regular identification

is proposed in Khan and Tamer (2010), and refers to identification with a finite effi ciency bound.

Regular identification of a parameter is desirable because it means possibility of standard inference

(see Chamberlain (1986)). It will be shown below that a necessary condition for regular identification

of β is

E[h(Z)|X] = X a.s, (4)

for an square integrable h(·); see Lemma 2.1, which builds on Severini and Tripathi (2012). We show
that condition (4) is also suffi cient for existence of an IV estimand identifying β. That is, we show that

(4) implies that β is identified from a linear structural regression

Y = X ′β + U, E[Uh(Z)] = 0. (5)
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The IV estimand uses the unknown, possibly not unique, transformation h(·) of Z as instruments. We
propose below a Two-Step IV (TSIV) estimator that first estimates the instruments from (4) and then

applies IV with the estimated instruments. The proposed IV estimator has the same nonparametric

interpretation as OLS, but under endogeneity.

If the nonparametric structural function g is identified, then β is of course identified (from 3).

Conditions for point identification and consistent estimation of g are given in the references above

on the nonparametric IV literature. Likewise, asymptotic normality for continuous functionals of a

point-identified g has been analyzed in Ai and Chen (2003), Ai and Chen (2007), Carrasco, Florens

and Renault (2006), Carrasco, Florens and Renault (2014), Chen and Pouzo (2015) and Breunig and

Johannes (2016), among others.

Nonparametric identification of g is, however, not necessary for identification of the OLIVA; see

Severini and Tripathi (2006, 2012). It is indeed desirable to obtain identification of β without requiring

completeness assumptions, which are known to be impossible to test (cf. Canay, Santos and Shaikh

(2013)). In this paper we focus on regular identification of the OLIVA without assuming completeness,

i.e. without assuming identification of g.

Section 2.2 below shows the necessity of the conditional moment restriction (4) for regular iden-

tification of the OLIVA. When regular identification of the OLIVA does not hold, but the OLIVA is

identified, we expect our estimator to provide a good approximation to the OLIVA. This follows be-

cause (i) under irregular identification of the OLIVA, the first step instrument approximately solves the

first step conditional moment, and (ii) small errors in the first step equation lead to small errors in the

second step limit.1 Inference under irregular identification is known to be less stable, see Chamberlain

(1986), and it is beyond the scope of this paper. See Babii and Florens (2018) for recent advances in

this direction, and Escanciano and Li (2013) for partial identification results.

2.2 Regular Identification of the OLIVA

We observe a random vector W = (Y,X ′, Z ′)′ satisfying (1), or equivalently,

r(z) := E[Y |Z = z] = E[g(X)|Z = z] := T ∗g(z), (6)

where T ∗ denotes the adjoint operator of the operator T, with Th(x) = E[h(Z)|X = x] a.s. Let G
denote the parameter space for g. Assume g ∈ G ⊆ L2(X) and r ∈ L2(Z), where henceforth, for a

generic random variable V, L2(V ) denotes the space of (measurable) square integrable functions of V,

i.e. f ∈ L2(V ) if ‖f‖2 := E
[
|f(V )|2

]
<∞, and where |A| = trace (A′A)1/2 is the Euclidean norm.2

The next result, which follows from an application of Lemma 4.1 in Severini and Tripathi (2012),

provides a necessary condition for regular identification of the OLIVA. Define g0 := arg ming:r=T ∗g ‖g‖ ,
and note that correct specification of the model guarantees that g0 is uniquely defined; see Engl, Hanke

and Neubauer (1996). Define ξ = Y −g0(X), Ω(z) = E[ξ2
∣∣Z = z], and let SZ denote the support of Z.

For future reference, define the range of the operator T as R(T ) := {f ∈ L2(X) : ∃s ∈ L2(Z), T s = f},
and for a subspace V, let V ⊥ and V denote, respectively, its orthogonal complement and its closure.

1We thank Andres Santos for making this point to us.
2When f is vector-valued, by f(V ) ∈ L2(V ) we mean that its components are all in L2(V ).

5



Assumption 1: (6) holds, g ∈ G ⊆ L2(X), r ∈ L2(Z), and E[XX ′] is finite and positive definite.

Assumption 2: 0 < infz∈SZ Ω(z) ≤ supz∈SZ Ω(z) <∞ and T is compact.

Assumption 3: There exists h(·) ∈ L2(Z) such that (4) holds.

Lemma 2.1 Let Assumptions 1-2 hold. If β is regularly identified, then Assumption 3 must hold.

The proof of Lemma 2.1 and other results in the text are gathered in Appendix B. Assumptions 1 and

2 are taken from Severini and Tripathi (2012) and are standard in the literature. Given the necessity

of Assumption 3 and its importance for our results it is useful to provide some discussion on it. The

first observation is that although suffi cient conditions for Assumption 3 to hold can be obtained for

parametric settings, such as those in the Monte Carlo section, it is hard to give primitive suffi cient

conditions in nonparametric settings. The second observation is that Assumption 3 may hold when

L2−completeness of X given Z fails and g is thus not identified (see Newey and Powell (2003) for

discussion of L2−completeness). To illustrate this point, we consider the empirically relevant case
where X is continuous and Z is discrete. It is well known that in this case g is not identified. In

contrast, Assumption 3 may hold and, importantly, it is testable. To see this, let {z1, ..., zJ} denote
the support of Z, with J < ∞, and note that any function h can be identified with a J × p matrix
through the representation

h(z) =
J∑
j=1

h(zj)1(z = zj),

where 1(A) is the indicator function of the event A. Assumption 3 is then simply the conditional

moment restriction with a finite number of parameters θ = (h(z1), ..., h(zJ)) ∈ Rp×J given by

E[θ1−X|X] = 0 a.s. (7)

where 1 = (1(Z = z1), ..., 1(Z = zJ))′. To deal with the potential lack of identification of h (i.e. of

θ) we use the minimum norm estimator described below, which is consistent for a population analog

h0(Z) = θ01. Furthermore, the estimator of θ0 can be shown to be asymptotically normal. Thus,

standard tools from nonparametric regression testing can be used to test for (7); see, e.g., Bierens (1982)

and Escanciano (2006). Whether the nonparametric conditional moment restriction in Assumption 3

is testable more generally (i.e. with continuous Z) is a delicate issue, see Chen and Santos (2018), and

it will be investigated elsewhere.

When Assumption 3 does not hold two possibilities may arise: (i) β is identified, but it has infinite

effi ciency bound, and (ii) β is not identified. When β is identified and Assumption 3 fails, X belongs

to the boundary of the range of T (i.e. X ∈ R(T ) \ R(T ), see Severini and Tripathi (2012)), and thus

our IV estimand can be made arbitrarily close to β. As we explain below in Remark 3.1, even when

Assumption 3 does not hold, our estimator has a well-defined IV estimand as its limit, provided a mild

condition is satisfied.
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The main observation of this paper is that the necessary condition for regular identification of β is

also suffi cient for existence of an IV estimand. This follows because by the law of iterated expectations,

Assumption 3 and E[ε|Z] = 0 a.s.,

β = E[XX ′]−1E[Xg(X)]

= E[E[h(Z)|X]X ′]−1E[E[h(Z)|X]g(X)]

= E[h(Z)X ′]−1E[h(Z)Y ], (8)

which is the IV estimand using h(Z) as instruments forX.We note that to obtain this IV representation

in (8) a weaker exogeneity than E[ε|Z] = 0 suffi ces, namely E[εh(Z)] = 0. We maintain the “strict”

exogeneity E[ε|Z] = 0 because it is often used in the literature and simplifies some of our subsequent

asymptotic results, although see Remark 3.2. The following result summarizes this finding and shows

that, although there are potentially many solutions to (4), the corresponding β is unique.

Proposition 2.2 Let Assumptions 1-3 hold. Then, β is regularly identified as (8).

Remark 2.1 By (4), E[h(Z)X ′] = E[XX ′]. Thus, non-singularity of E[h(Z)X ′] follows from that of

E[XX ′]. Thus, the strength of the instruments h(Z) is measured by the level of multicollinearity in X.

3 Two-Step Instrumental Variables Estimation

Proposition 2.2 suggests a TSIV estimation method where, first, an h is estimated from (4) and then,

an IV estimator is considered using the estimated h as instrument. To describe the estimator, let

{Wi ≡ (Yi, X
′
i, Z
′
i)
′}ni=1 be an independent and identically distributed (iid) sample of size n satisfying

(1). The TSIV estimator follows the steps:

Step 1. Estimate an instrument h(Z) satisfying E[h(Z)|X] = X a.s., say ĥn, as defined in (13) below.

Step 2. Run linear IV using instruments ĥn(Z) for X in Y = X ′β + U, i.e.

β̂ =

(
1

n

n∑
i=1

ĥn(Zi)X
′
i

)−1(
1

n

n∑
i=1

ĥn(Zi)Yi

)
, (9)

where ĥn is the first step estimator given in Step 1.

For ease of exposition, we consider first the case where X and Z have no overlapping components

(i.e. no included exogenous or controls) and both are continuous. We also analyze below the case of

control variables and discrete variables.

3.1 First-Step Estimation

As argued in pg. 130 of Santos (2012) identification of h in (4) is problematic, as in most instances

instruments posses a variation that is unrelated to the endogenous regressor (i.e., there exists a function
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ψ(z) such that E[ψ(Z)|X] = 0 a.s.). To deal with the problem of lack of uniqueness of h, we consider

a Tikhonov-type estimator. This approach is commonly used in the literature estimating g, see Hall

and Horowitz (2005), Carrasco, Florens and Renault (2006), Florens, Johannes and Van Bellegem

(2011), Chen and Pouzo (2012) and Gagliardini and Scaillet (2012), among others. Chen and Pouzo

(2012) propose a PSMD estimator of g and show the L2−consistency of a solution identified via a
strict convex penalty. These authors also obtain rates in Banach norms under point identification.

Our first-step estimator ĥn is a PSMD estimator of the form considered in Chen and Pouzo (2012)

when identification is achieved with an L2-penalty. As it turns out, the Tikhonov-type or L2-penalty

estimator is well motivated in our setting, as we explain below. It implies that our instrument satisfies

a certain suffi ciency property.

Defining m(X;h) := E[h(Z)−X|X], we estimate the unique h0 satisfying h0 = limλ↓0 h0(λ), where

h0(λ) = arg min{||m(·;h)||2 + λ||h||2 : h ∈ L2(Z)},

and λ > 0. Assumption 3 guarantees the existence and uniqueness of h0, see Engl, Hanke and Neubauer

(1996). The suffi ciency property mentioned above is that for any distinct solution h1 of (4), h1 6= h0,

it holds that in the first stage regression

X = c0 + α0h0(Z) + α1h1(Z) + V, Cov(V, hj(Z)) = 0, j = 0, 1, (10)

α1 must be zero, as shown in the next result. We note that V is simply a least squares (i.e. reduced

form) error term.

Proposition 3.1 Let h1 6= h0 be another solution of (4). Then, α1 = 0 in (10).

This result states that after controlling for h0(Z) in the first stage regression, any other distinct

solution to (4) is irrelevant in the first stage. It is in this precise sense that we say h0(Z) is suffi cient.

We note, however, that this property does not imply that h0 is better than any other solution to (4)

in terms of leading to a more effi cient estimation of β. For effi ciency considerations see Severini and

Tripathi (2012).

Remark 3.1 The minimum norm h0 is well-defined under a weaker condition than Assumption 3.

From Engl, Hanke and Neubauer (1996), for existence of h0 it suffi ces that X belongs to the dense set

R(T ) +R(T )⊥. In particular, this assumption holds when X is a square integrable continuous variable

and Z is discrete (since R(T ) +R(T )⊥ ≡ L2(X) in this case). Thus, under mild conditions, β̂ has a

probabilistic limit satisfying (5).

Having motivated the Tikhonov-type instrument, we introduce now its PSMD estimator. Let

En[g(W )] denote the sample mean operator, i.e. En[g(W )] = n−1
∑n

i g(Wi), let ||g||n =
(
En[|g(W )|2]

)1/2

be the empirical L2 norm, and let Ê[h(Z)|X] be a series-based estimator for the conditional mean

E[h(Z)|X], which is given as follows. Consider a vector of approximating functions

pKn(x) = (p1(x), ..., pKn(x))′,
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having the property that a linear combination can approximate E[h(Z)|X = x] well. Then,

Ê[h(Z)|X = x] = pKn
′
(x)(P ′P )−1

n∑
i=1

pKn(Xi)h(Zi),

where P = [pKn(X1), ..., pKn(Xn)]′ and Kn →∞ as n→∞.
Let H ⊆ L2(Z) denote the parameter space for h. Then, define the estimator

ĥn := arg min{||m̂(X;h)||2n + λn||h||2n : h ∈ Hn}, (11)

where Hn ⊂ H ⊆ L2(Z) is a linear sieve parameter space whose complexity grows with sample size,

m̂(Xi;h) = Ê(h(Z) − X|Xi), and λn is a sequence of positive numbers satisfying that λn ↓ 0 as

n ↑ ∞, and some further conditions given in the Appendix A. In our implementation Hn is the finite
dimensional linear sieve given by

Hn =

h : h =

Jn∑
j=1

ajqj(·)

 (12)

where qJn(z) = (q1(z), ..., qJn(z))′ is a vector containing a linear sieve basis, with Jn →∞ as n→∞.
To better understand the first step estimator and how it can be computed by standard methods

consider the approximation

X = E[h(Z)|X] ≈ E[a′qJn(Z)
∣∣X] = a′E[qJn(Z)

∣∣X],

which suggests a two step procedure for obtaining ĥn : (i) first compute the fitted values q̂(X) =

Ê[qJn(Z)
∣∣X] by OLS of qJn(Z) on pKn(X); and then (ii) run Ridge regression X on q̂(X). Indeed, if

we define Dn = En[q̂(X)X ′], Q2n = En[qJn(Z)qJn(Z)′], and

Âλn = En[q̂(X)q̂(X)′] + λnQ2n.

Then, the closed form solution to (11) is given by

ĥn(·) = D′nÂ
−1
λn
qJn(·). (13)

This estimator can be easily implemented by an OLS and a standard Ridge regression steps: (i)

standardize qJn so that Q2n becomes the identity (simply multiply the original qJn by Q
−1/2
2n ); (ii) run

OLS qJn(Z) on pKn(X) and keep fitted values q̂(X); (iii) run standard Ridge regression of X on q̂(X);

the slope coeffi cient in the last regression is D′nÂ
−1
λn
. Section 3.4 further discusses implementation of

the estimation of h0 in a more general setting with additional exogenous variables.

An alternative minimum norm approach requires choosing two sequences of positive numbers an
and bn and solving the program

h̃n := arg min{||h||2n : h ∈ Hn, ||m̂(X;h)||2n ≤ bn/an}.

This is the approach used in Santos (2011) for different functionals than the OLIVA. We prefer our

implementation, since we only need one tuning parameter rather than two, and data driven methods

for choosing λn are readily available; see Section 3.4.
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3.2 Second-Step Estimation and Inference

This section establishes the consistency and asymptotic normality of β̂, and the consistency of its

asymptotic variance, which is useful for inference. Recall W = (Y,X ′, Z ′)′ and define

m(W,β, h, g) = (Y −X ′β)h(Z)− (g(X)−X ′β)(h(Z)−X), (14)

with the short notation m0 = m(W,β, h0, g0). The second term in (14) accounts for the asymptotic

impact of estimating the instrument h0. When the minimum norm structural function g0 is linear, like

with a binary treatment, this second term is zero and there will be no impact from estimating h0 on

inference. Thus, we can interpret this second term in m as accounting for a “nonlinearity bias” in

inference of the IV estimator.

To estimate the asymptotic variance of β̂ is useful to estimate g0. We introduce a Tikhonov-type

estimator that is the dual of ĥn. Let ĝn(·) denote a PSMD estimator of g0 given by

ĝn(·) = G′nB
−1
λn
pKn(·), (15)

with Gn = En[p̂(Z)Y ], p̂(Z) = Ê[pKn(X)
∣∣Z], Ê[g(X)|Z = z] = qJn

′
(z)(Q′Q)−1

∑n
i=1 q

Jn(Zi)g(Xi),

Q = [qJn(Z1), ..., qJn(Zn)]′, P2n = En[pKn(X)pKn(X)′], and B̂λn = En[p̂(Z)p̂(Z)′] + λnP2n. For ease of

presentation, we use the same notation for the tuning parameters in ĥn and ĝn, although of course we

will use different tuning parameters Kn and Jn for estimating ĥn or ĝn, see Section 3.4 for issues of

implementation.

Theorem 3.2 Let Assumptions 1-3 above and Assumptions A1-A5, A6(i-iii) in the Appendix A hold.
Then, β̂ is consistent and asymptotically normal, i.e.

√
n(β̂ − β) −→d N(0,Σ),

where Σ = E[h0(Z)X ′]−1E[m0m
′
0]E[Xh0(Z)′]−1. Furthermore, Σ is consistently estimated by

Σ̂ = En[ĥn(Zi)X
′
i]
−1En[m̂nim̂

′
ni]En[Xiĥ

′
n(Zi)]

−1, (16)

where m̂ni = m(Wi, β̂, ĥn, ĝn).

Remark 3.2 If E[ε|Z] = 0 is relaxed to only E[εh0(Z)] = 0, then the asymptotic normality of β̂ goes

through with (g(X)−X ′β) in m0 replaced by vn in (40) of the Appendix, provided vn and the resulting

m0 have finite variances, see the proof of Theorem 3.2.

The assumptions in Theorem 3.2 are standard in the literature of two-step semiparametric estima-

tors. Theorem 3.2 can be then used to construct confidence regions for β and testing hypotheses about

β following standard procedures. The proof of Theorem 3.2 relies on new L2−rates of convergence for
ĥn and ĝn under partial identification of h and g (note that the rates in Chen and Pouzo (2012) are

given under point identification and Santos (2011) obtained related rates but for a weak norm).
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3.3 Partial Effects Interpretation, Exogenous Controls and Discrete Variables

We provide now a partial effects interpretation for subvectors of the OLIVA parameter β that are

analogous to OLS. Define X = (X ′1, X
′
2)′ and partition β accordingly as β = (β′1, β

′
2)′. Suppose we are

only interested in β2. From standard OLS theory, we obtain

β2 = E[V2V
′

2 ]−1E[V2g(X)],

where V2 is the OLS error from the regression of X2 on X1. This result could be used to obtain an

estimator of β2 that does not compute an estimator for β1 and that reduces the dimensionality of the

problem of estimating h (from the dimension of the original X to the dimension of X2), since now we

can use the condition

E[h(Z)|V2] = V2 a.s.

This method might be particularly useful when the dimension of X1 is large and g has a partly linear

structure

g(X) = γ′1X1 + g2(X2), (17)

since then β2 = E[V2V
′

2 ]−1E[V2g2(X2)] can be interpreted as providing a best linear approximation to

g2(X2) with a linear function of V2, i.e.

β2 = arg min
b2

E[
(
g2(X2)− b′2V2

)2
].

In this discussion, X1 could be variables that are of secondary interest.

Suppose now that there are exogenous variables included in the structural equation g. This means

X and Z have common components. Specifically, with some abuse of notation, define X = (X ′1, X
′
2)′

and Z = (Z ′1, Z
′
2)′ where X1 = Z1 denote the overlapping components of X and Z, with dimension

p1 = q1. This is a very common situation in applications, where exogenous controls are often used. In

this setting a solution of E[h(Z)|X] = X a.s. has the form h(Z) = (Z ′1, h
′
2(Z))′, where

E[h2(Z)|X] = X2 a.s. (18)

Following the arguments of the general case, we could obtain an estimator given by ĥn = (Z ′1, ĥ
′
2n)′,

where

ĥ2n(·) = D′2nÂ
−1
λn
qJn(·), (19)

and D2n := En[q̂(X)X ′2]. This setting also covers the case of an intercept with no other common

components, where X1 = Z1 = 1 and q1 = 1. The asymptotic normality for β̂ continues to hold, with

no changes in the asymptotic distribution.

If the dimension of X1 is high and the sample size is moderate, the method above may not perform

well due to the curse of dimensionality. Equation (18) implies

E[h2(Z)|X2] = X2 a.s. (20)

so that nonparametric estimation of h20 only involves functions pKn(X2) and qJn(Z). Equation (20) is

still necessary for regular identification. Summarizing, for implementing our methods with moderate
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or high dimensional controls X1 we recommend our general algorithm above with bases {pKn(X2)} and{
qJn(Z)

}
, which is consistent with the specification in (17). Further details on implementation are

provided in Section 3.4.

Simplifications occur when some variables are discrete. When the endogenous variable X is discrete

we do not need Kn → ∞, and we can choose pKn as a saturated basis. Consider first the important

case of a binary endogenous variable X = (1, X2) with X2 ∈ {0, 1}. Define the propensity score

π(z) := Pr (X2 = 1|Z = z) .We show below that under the mild assumption that π(z) is not constant,

Assumption 3 holds. Furthermore, the minimum norm solution h0 is simply

h0(z) = α+ γπ(z), (21)

where α = π̄ (1− γ) , γ = π̄(1 − π̄)/var(π(Z)) and π̄ = Pr (X2 = 1). An implication of this represen-

tation is that the slope of the OLIVA is

Cov(Y, h0(Z))

Cov(X2, h0(Z))
=

Cov(Y, π(Z))

Cov(X2, π(Z))
≡ αIVπ , (22)

i.e., the LATE estimand αIVπ using the propensity score as instrument, which was suggested in Imbens

and Angrist (1994). Thus, the OLIVA in the binary endogenous case coincides with an important IV

estimand recommended in the literature. We summarize our findings in the following result. The proof

can be found in the Appendix.

Proposition 3.3 If X = (1, X2) with X2 a binary endogenous variable, 0 < π̄ < 1, and var(π(Z)) > 0,

then Assumption 3 holds with a minimum norm solution h0 given by (21). Furthermore, the OLIVA

is β = (cIVπ , αIVπ )′, where cIVπ = E[Y ]− αIVπ π̄ and αIVπ is defined in (22).

This result implies that for the binary endogenous case estimating h0, and then β0, simply requires

estimating nonparametrically the propensity score.

More generally, if X has d points of support, say {x1, ..., xd} , then we can set Kn = d and pk(x) =

1(x = xk), k = 1, ..,Kn, in our general algorithm. Define the unconditional probabilities Pr (X = xj) =

πj , j = 1, ..., d. Then, Assumption 3 boils down to existence of h satisfying the linear equalities, for

k = 1, ..., d,

E[h(Z)pk(X)] = πkxk. (23)

Using Theorem 2, pg. 65, in Luenberger (1997), we can find a closed form solution for h0 as follows.

Define the generalized propensity scores πj(z) := Pr (X = xj |Z = z) and the random vector Π ≡
Π(Z) = (π1(Z), ..., πd(Z))′. If E[ΠΠ′] is positive definite, then the minimum norm solution to (4) is given

by h0(z) = γ′Π(z) where γ = (E[ΠΠ′])−1 S and S = (π1x1, ..., πdxd)
′. Thus, for discrete endogenous

variables our nonparametric algorithm with Kn = d and pk(x) = 1(x = xk), k = 1, ..,Kn, is a

semiparametric method where h0(z) = γ′Π(z) is estimated by estimating the conditional probabilities

Π(z) by Π̂(z) = (π̂1(Z), ..., π̂d(Z)), where π̂k(z) = Ê[pk(X)|Z = z]. In estimating γ, if the sample

analog of E[ΠΠ′] is positive definite, then there is no need to choose λ for estimating h0. If this matrix

is not invertible, we can apply the Tikhonov-type estimator, as proposed above.

12



Similarly, when Z is discrete we do not need Jn diverging to infinity. As before, we can choose a

linear sieve Hn that is saturated and qJn(Z) could be a saturated basis for it. Specifically, if Z takes

J discrete values, {z1, ..., zJ}, we can take qj(z) = 1(z = zj), j = 1, ..., Jn ≡ J.
Summarizing, all the different cases (with or without controls, nonparametric or semiparametric

structural functions, discrete or continuous variables) can be implemented with the same algorithm but

with different definitions of the approximation bases {pKn(X), qJn(Z)}. In all these cases, the formulas
for the asymptotic variance of β̂ remain the same. The following section provides further details on

implementation.

3.4 Implementation

To enhance the practical applicability of our method we summarize its implementation in what we

think is the most useful case in empirical applications: estimation in the presence of a vector of controls

entering linearly in the models for g and h. Since the vector of controls can be high dimensional, we

do not think of the linearity of the controls as a strong assumption. As before, we split X = (X ′1, X
′
2)′

and Z = (Z ′1, Z
′
2)′, where X1 = Z1 denote the vector of exogeneous controls (containing an intercept),

with dimension p1 = q1. The endogenous variable of interest X2 has dimension p2 = p − p1, and the

instrument Z2 has dimension q2 = q − q1. Following the discussion above, for implementation one

has to choose bases {pKn(x), qJn(z)} and the tuning parameters {Jn,Kn, λn}. Using these imputs, we
estimate an instrument ĥn = (Z ′1, ĥ

′
2n)′, where ĥ2n estimates a minimum norm solution h20 of

E[h2(Z)|X2] = X2 a.s.

An appealing feature of sieve estimation is that additional semiparametric restrictions can be imposed

on h2 simply by restricting the terms in the basis {qJn(z)}. These include additivity or exclusion
restrictions, among others. For example, one restriction that we impose in this section is that h2 is

linear in Z1, i.e. h2(Z) = a′1Z1 + h20(Z2). This is, of course, not necessary for regular identification,

but it ameliorates the curse of dimensionality, specially when Z1 is high dimensional, and it may lead

to better finite sample performance (by reducing variance).

As explained in the previous section, the implementation varies according to the nature of the

endogenous variable X2 and the instrument Z2 (whether continuous or discrete). In the continuous

case we need to choose {Jn,Kn, λn} for estimating h0. We can make these choices simultaneously by

Generalized Cross-validation (cf. Wahba (1990), GCV henceforth). To simplify the computations we

implement GCV by setting first Jn = q1 + jn for fixed value jn in a small grid (e.g. jn ∈ {4, 5, 6, 7}),
then setting Kn = p1 + bcjnc , for a grid of values for c in [1, 3], where bxc is the floor function, and
then minimizing in τ = {jn, c, λ} the GCV criteria GCVn(τ) given below in (25) over the grid values.

Details are given as follows. Let Hn denote the n × p matrix with rows ĥn(Zi) i = 1, ..., n. Let

X = [X1, ..., Xn]′ and denote by X1 ≡ Z1 and X2, respectively, the corresponding n × p1 and n × p2

design matrices based on the partition X = (X ′1, X
′
2)′. Construct the n × Jn matrix Q = [Z1 Q2],

Jn = q1 + jn, Q2 = [qjn(Z21), ..., qjn(Z2n)]′ (Q2 excludes an intercept), and similarly the n×Kn matrix

P = [X1 P2], Kn = p1 + kn, kn = bcjnc , P2 = [pkn(X21), ..., pkn(X2n)]′ (P2 excludes an intercept), and
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their corresponding projection matrices ΠP and ΠQ, where ΠA = A(A′A)−1A′ for a generic matrix A.

Denote also Id as the d× d identity matrix. Then, to provide an expression for Hn we construct

H2n = QÂ−1
λn
Q′ΠPX2,

where

Âλn = Q′(ΠP + λnIn)Q.

Finally,

Hn = [Z1 H2n]

and

β̂ =
(
H ′nX

)−1
H ′nY, (24)

where Y = [Y1, ..., Yn]′. This provides a matrix formula implementation for our estimator.

To give the GCV criteria define Lτ = X (H ′nX)−1H ′n, Ŷτ = LτY = (Ŷτ1, ..., Ŷτn)′ and vτ =

trace(Lτ ). Then, the GCV criteria for estimating β̂ is

GCVn(τ) =
1

n

n∑
i=1

(
Yi − Ŷτi

1− (vτ/n)

)2

. (25)

To estimate g0 in the presence of a high dimensional vector of controls we follow the specification in

(17). The n× 1 vector Gn of fitted values ĝn(Xi), i = 1, ..., n, is given by

Gn = PB̂−1
λn
P ′ΠQY, (26)

where

B̂λn = P ′(ΠQ + λnIn)P.

Since Gn is linear in Y, we can easily set another GCV method for selecting {Jn,Kn, λn} for ĝn (simply
replaced Lτ above by Lτ = PB̂−1

λn
P ′ΠQ). See also Centorrino, Feve and Florens (2017).

The following algorithm summarizes the main steps for implementation3:

Step 1. Compute τn = arg minGCVn(τ), over a finite grid of values of τ = {j, c, λ}.

Step 2. Compute β̂ following (24).

Step 3. Compute ĝn following (26).

Step 4. Compute m̂ni = m(Wi, β̂, ĥn, ĝn) and Σ̂ = En[ĥnX
′
i]
−1En[m̂nim̂

′
ni]En[Xiĥ

′
n]−1.

For continuous variables we recommend using B-splines as sieve basis. If Z2 is discrete, with support

{z21, ..., z2j2}, we set Jn = q1 + j2 − 1 and qj(z2) = 1(z2 = z2j), j = 2, ..., j2, in the algorithm above.

Similarly, if X2 is discrete, with support {x21, ..., x2k2}, we set Kn = p1 + k2 − 1, and pk(x2) = 1(x2 =

x2k), k = 2, ..., k2. In this discussion, we exclude the first element in the indicators because the intercept

is part of the exogenous controls.
3Matlab and R code to implement the TSIV and related inferences are available from the authors upon request.
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3.5 Weighted least squares

Our previous discussion can be extended to weighted least squares criteria. That is, suppose that the

OLIVA is now defined as

βw = arg min
γ∈Rp

E[
(
g(X)− γ′X

)2
w(X)], (27a)

where w(X) is a positive weight function. This extension can be relevant in a number of applications.

For example, if f is the density of X and f∗ is a counterfactual density, by taking w(x) = f∗(x)/f(x)

the linear approximation is under a counterfactual density which might better summarized the interest

of the researcher. Our theory can be extended to this setting as follows. The necessary condition for

regular identification of βw is now

E[h(Z)|X] = Xw(X) a.s, (28)

for an square integrable h(·); and under this condition and if E[XX ′w(X)] is positive definite, then it

follows that

βw = E[XX ′w(X)]−1E[Xw(X)g(X)]

= E[h(Z)X ′]−1E[h(Z)Y ].

The estimation proceeds as in our basic case (where w = 1). If w is unknown, we can estimate w

nonparametrically and use the plugging estimator with the estimated w to solve for h in (28). Our

estimator will be consistent and asymptotically normal under regularity conditions, as in the basic

case. It remains to study if estimation of w changes the asymptotic variance of the resulting estimator

of βw. This issue is, however, beyond the scope of this paper and is left for future research.

4 A Robust Hausman Test

Applied researchers are concerned about the presence of endogeneity, and they traditionally use tools

such as the Hausman (1978)’s exogeneity test for its measurement. This test, however, is uninformative

under misspecification; see Lochner and Moretti (2015). The reason for this lack of robustness is that in

these cases OLS and IV estimate different objects under exogeneity, with the estimand of standard IV

depending on the instrument itself. As an important by-product of our analysis, we robustify the classic

Hausman test of exogeneity against nonparametric misspecification of the linear regression model.

The classical Hausman test of exogeneity (cf. Hausman (1978)) compares OLS with IV. If we use

the TSIV as the IV estimator, we obtain a robust version of the classical Hausman test, robust to the

misspecification of the linear model. For implementation purposes it is convenient to use a regression-

based test (see Wooldridge (2015), pg. 481). We illustrate the idea in the case of one potentially

endogenous variable X2 and several exogenous variables X1, with X1 including an intercept.

In the model

Y = β′1X1 + β2X2 + U, E[Uh(Z)] = 0, h(Z) = (X ′1, h2(Z))′,
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the variable X2 is exogenous if Cov(X2, U) = 0. If we write the first-stage as

X2 = α′1X1 + α2h2(Z) + V, E[V h(Z)] = 0,

then weak exogeneity of X2 is equivalent to Cov(V,U) = 0. This in turn is equivalent to ρ = 0 in the

least squares regression

U = ρV + ξ.

A simple way to run a test for ρ = 0 is to consider the augmented regression

Y = β′X + ρV + ξ,

estimated by OLS and use a standard t− test for ρ = 0.

Since V is unobservable, we first need to obtain residuals from a regression of the endogenous

variable X2 on X1 and ĥ2n(Z), say V̂ . Then, run the regression of Y on X and V̂ . The new Hausman

test is a standard two-sided t-test for the coeffi cient of V̂ , or its Wald version in the multivariate

endogenous case. Denote the t-test statistic by tn. The benefit of this regression approach is that under

some regularity conditions given in Appendix A no correction is necessary in the OLS standard errors

because V̂ is estimated. Denote S = (X,V )′, and consider the following mild assumption.

Assumption 4: The matrix E[SS′] is finite and non-singular.

Theorem 4.1 Let Assumptions 1-4 above and Assumptions A1-A6 in the Appendix A hold. Then,

under the the null of exogeneity of X2, tn −→d N(0, 1).

The proof of Theorem 4.1 is involved and requires stronger conditions than that of Theorem 3.2.

In particular, for obtaining the result that standard OLS theory applies under the null hypothesis we

have used a conditional exogeneity assumption between U and Z, E[U |Z] = 0 a.s. Simulations below

show that, at least for the models considered, this assumption leads to a robust Hausman test that

is able to control the empirical size. We note that under the null of exogeneity we do not require the

model to be linear in the sense of E[U |X] = 0 a.s.

5 Monte Carlo

This section studies the finite sample performance of the proposed methods. Consider the following

Data Generating Process (DGP):
Y =

∑p
j=1Hj(X) + ε,

Z = s(D),

ε = ρεV + ζ,

(
X

D

)
∼ N

((
0

0

)
,

(
1 γ

γ 1

))
,

where Hj(x) is the j − th Hermite polynomial, with the first four given by H0(x) = 1, H1(x) = x,

H2(x) = x2− 1 and H3(x) = x3− 3x; V = X −E[X|Z], ζ is a standard normal, drawn independently
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of X and D, and s is a monotone function given below. The DGP is indexed by p and the function s.

To generate V note

E[X|Z] = E[E[X|D]|Z] = γE[D|Z] = γs−1(Z),

where s−1 is the inverse of s. Thus, by construction Z is exogenous, E[ε|Z] = 0, while X is endogenous

because E[ε|X] = ρX, with ρ = ρε(1− γ2), ρε > 0 and −1 < γ < 1.

The structural function g is given by

g(x) =

p∑
j=1

Hj(X),

and is therefore linear for p = 1, but nonlinear for p > 1. It follows from the orthogonality of Her-

mite polynomials that the true value for OLIVA is β = 1 and that g is identified if γ 6= 0 (since

V ar(E[g(X)|Z]) =
∑∞

j=1 g
2
j γ

2j , where gj = E[g(X)Hj(X)] is the j − th Hermite coeffi cient, and thus,
E[g(X)|Z] = 0 =⇒ g = 0).

Note also that the OLIVA is regularly identified, because h(Z) = s−1(Z)/γ solves

E[h(Z)|X] = X.

We consider three different DGPs, corresponding to different values of p and functional forms for s:

DGP1: p = 1 and s(D) = D (linear; s−1(Z) = Z);

DGP2: p = 2 and s(D) = D3 (nonlinear; s−1(Z) = Z1/3);

DGP3: p = 3 and s(D) = exp(D)/(1 + exp(D)) (nonlinear; s−1(Z) = log(Z)− log(1− Z));

Several values for the parameters (γ, ρ) will be considered: γ ∈ {0.4, 0.8} and ρ ∈ {0, 0.3, 0.9}. We
will compare the TSIV with OLS and standard IV (using instrument Z). For DGP1, h(Z) = γ−1Z and

hence the standard IV estimator with instrument Z is a consistent estimator for the OLIVA. Indeed,

the standard IV can be seen as an oracle (infeasible version of our TSIV) under DGP1, where h is

known rather than estimated. This allows us to see the effect of estimating h0 on inferences. For DGP2

and DGP3, IV is not consistent for the OLIVA. The number of Monte Carlo replications is 5000. The

sample sizes considered are n = 100, 500 and 1000.

Tables 1-3 report the Bias and MSE for OLS, IV and the TSIV for DGP1-DGP3, respectively.

Our estimator is implemented with B-splines, following the GCV described in Section 3.4, where to

simplify the computations we set Jn = 6 and Kn = 2Jn, and optimize only in λ for each simulated

data. A similar strategy was followed in Blundell, Chen and Kristensen (2007). Likewise, we have

followed a simple rule for selecting {Jn,Kn, λn} for ĝn: switch the values of Jn and Kn used for ĥn to

compute ĝn (so now Jn = 2Kn), and use same value of λn for ĝn as for estimating ĥn, which seems

to work well in our simulations. Remarkably, for DGP1 in Table 1 our TSIV implemented with GCV

performs comparably or even better than IV (which does not estimate h and uses the true h). Thus,

our estimator seems to have an oracle property, performing as well as the method that uses the correct

specification of the model. As expected, OLS is best under exogeneity, but it leads to large biases
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Table 1: Bias and MSE for DGP 1.

ρ γ n BIAS_OLS BIAS_IV BIAS_TSIV MSE_OLS MSE_IV MSE_TSIV

0.0 0.4 100 -0.0021 -0.0019 0.0010 0.0109 0.0829 0.0554

500 0.0017 0.0025 0.0020 0.0021 0.0127 0.0105

1000 -0.0001 0.0018 0.0020 0.0010 0.0067 0.0054

0.8 100 -0.0030 -0.0040 -0.0040 0.0102 0.0163 0.0159

500 0.0001 -0.0004 -0.0004 0.0019 0.0030 0.0030

1000 0.0019 0.0025 0.0026 0.0010 0.0016 0.0016

0.3 0.4 100 0.2950 -0.0101 0.0841 0.0968 0.0908 0.0729

500 0.2993 0.0026 0.0347 0.0915 0.0145 0.0168

1000 0.3006 -0.0003 0.0189 0.0914 0.0071 0.0080

0.8 100 0.2956 -0.0107 0.0061 0.0987 0.0207 0.0216

500 0.2991 0.0009 0.0038 0.0918 0.0039 0.0039

1000 0.2987 -0.0023 -0.0012 0.0904 0.0019 0.0019

0.9 0.4 100 0.8993 -0.0827 0.1753 0.8213 0.1990 0.1569

500 0.9028 -0.0145 0.0421 0.8173 0.0295 0.0296

1000 0.8998 -0.0066 0.0231 0.8108 0.0130 0.0140

0.8 100 0.8965 -0.0186 0.0287 0.8270 0.0573 0.0571

500 0.8980 -0.0036 0.0030 0.8114 0.0108 0.0109

1000 0.8993 0.0031 0.0058 0.8111 0.0049 0.0050

under endogeneity. For the nonlinear models DGP2 and DGP3, IV deteriorates because the linear

model is misspecified. Our TSIV performs well, with a MSE that converges to zero as n increases.

Increasing γ makes the instrument stronger, thereby reducing the MSE of IV estimates, while for a

fixed γ, increasing the level of endogeneity increases the MSE.

We have done extensive sensitivity analysis on the performance of the TSIV estimator. Simulations

in the Supplemental Appendix report the sensitivity of the estimator to different choices of tuning

parameters, Jn, Kn and λn. From these results, we see that the TSIV estimator is not sensitive to the

choice of these parameters, within the wide ranges for which we have experimented. This is consistent

with the regular identification, which means that the estimator should be robust to local perturbations

of the tuning parameters. Likewise, unreported simulations with other DGPs confirm the overall good

performance of the proposed TSIV under different scenarios.

Table 4 provides the results for coverage of confidence intervals based on the asymptotic normality

of the TSIV using the GCV-computed λn, along with that using 0.7λn and 0.9λn. The coverage is

very stable for the three choices of λn considered. The performance in DGP1 and DGP2 is fairly good,

while in DGP3 it noticeably improves when the sample size increases.

We now turn to the Hausman test. Practitioners often use the Hausman test to empirically eval-

uate the presence of endogeneity. As mentioned above, the standard Hausman test is not robust to

misspefication of the linear model, because in that case OLS and IV estimate different parameters

(Lochner and Moretti (2015)). We confirm this by simulating data from DGP1-DGP3 and reporting

rejection frequencies for the standard Hausman test for γ ∈ {0.4, 0.8}. Table 5 contains the results.
For DGP1, the rejection frequencies for ρ = 0 are close to the nominal level of 5% across the different
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Table 2: Bias and MSE for DGP 2.

ρ γ n BIAS_OLS BIAS_IV BIAS_TSIV MSE_OLS MSE_IV MSE_TSIV

0.0 0.4 100 0.0131 -0.0030 -0.0037 0.1009 0.6321 0.2226

500 0.0083 0.0216 0.0126 0.0213 0.1319 0.0479

1000 0.0021 0.0005 0.0034 0.0115 0.0764 0.0228

0.8 100 -0.0012 0.0001 -0.0001 0.0990 0.4559 0.1286

500 0.0015 0.0056 0.0032 0.0211 0.1261 0.0275

1000 0.0019 0.0084 0.0030 0.0113 0.0689 0.0154

0.3 0.4 100 0.2932 -0.0472 0.0605 0.1859 0.6167 0.2342

500 0.2874 -0.0325 0.0302 0.1023 0.1417 0.0594

1000 0.3008 -0.0135 0.0402 0.1013 0.0778 0.0331

0.8 100 0.3064 0.0083 0.0318 0.1987 0.4554 0.1400

500 0.3020 0.0078 0.0208 0.1114 0.1226 0.0289

1000 0.3046 0.0076 0.0248 0.1040 0.0647 0.0168

0.9 0.4 100 0.9053 -0.1359 0.2155 0.9270 1.0165 0.3615

500 0.8968 -0.0093 0.0794 0.8260 0.1619 0.0914

1000 0.8974 -0.0122 0.0493 0.8159 0.0817 0.0449

0.8 100 0.9095 -0.0117 0.0491 0.9425 0.5482 0.1921

500 0.8969 -0.0013 0.0226 0.8290 0.1405 0.0435

1000 0.8981 -0.0021 0.0271 0.8185 0.0753 0.0220

Table 3: Bias and MSE for DGP 3.

ρ γ n BIAS_OLS BIAS_IV BIAS_TSIV MSE_OLS MSE_IV MSE_TSIV

0.0 0.4 100 -0.0570 -1.5268 -0.0717 0.5023 381.7332 0.6817

500 -0.0021 -0.5039 -0.0346 0.1000 155.9296 0.1326

1000 -0.0014 -0.0365 -0.0378 0.0550 0.6179 0.0681

0.8 100 -0.0418 -0.4112 -0.1106 0.4795 2.6703 0.4935

500 -0.0096 -0.2270 -0.0411 0.1072 0.4192 0.1084

1000 -0.0113 -0.2150 -0.0330 0.0527 0.2452 0.0543

0.3 0.4 100 0.2899 -5.4825 0.0227 0.6475 28179.2626 0.8182

500 0.2882 -0.1335 0.0060 0.1878 1.5707 0.1571

1000 0.2887 -0.0822 0.0199 0.1351 0.6518 0.0926

0.8 100 0.2693 -0.3815 -0.0857 0.5906 11.1463 0.5498

500 0.3062 -0.1985 -0.0249 0.2061 0.4885 0.1221

1000 0.2951 -0.2166 -0.0246 0.1395 0.2512 0.0570

0.9 0.4 100 0.8470 1.4445 0.1675 1.1993 1772.3946 0.8970

500 0.8888 -0.3336 0.0449 0.9098 4.8599 0.2103

1000 0.8914 -0.1313 0.0158 0.8473 0.8558 0.0982

0.8 100 0.8341 -0.5724 -0.0917 1.1833 4.3735 0.6045

500 0.8749 -0.2933 -0.0566 0.8668 0.6084 0.1301

1000 0.8863 -0.2466 -0.0401 0.8380 0.2861 0.0681
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Table 4: 95% coverage for TSIV.

DGP1 DGP2 DGP3

ρ γ n 0.7cv 0.9cv 1.0cv 0.7cv 0.9cv 1.0cv 0.7cv 0.9cv 1.0cv

0.0 0.4 100 0.973 0.976 0.976 0.950 0.954 0.955 0.899 0.901 0.903

500 0.976 0.978 0.977 0.950 0.951 0.951 0.929 0.931 0.932

1000 0.971 0.973 0.973 0.954 0.957 0.956 0.931 0.931 0.930

0.8 100 0.964 0.965 0.966 0.929 0.929 0.931 0.837 0.837 0.838

500 0.957 0.957 0.957 0.941 0.942 0.944 0.902 0.905 0.905

1000 0.950 0.951 0.951 0.932 0.938 0.941 0.926 0.927 0.927

0.3 0.4 100 0.976 0.982 0.982 0.950 0.948 0.949 0.919 0.921 0.922

500 0.957 0.957 0.959 0.949 0.952 0.950 0.931 0.933 0.932

1000 0.964 0.965 0.965 0.938 0.939 0.938 0.936 0.936 0.934

0.8 100 0.945 0.945 0.946 0.917 0.920 0.920 0.858 0.861 0.862

500 0.944 0.941 0.941 0.946 0.946 0.946 0.917 0.920 0.921

1000 0.961 0.960 0.960 0.940 0.941 0.941 0.917 0.923 0.923

0.9 0.4 100 0.903 0.901 0.902 0.938 0.943 0.943 0.955 0.957 0.956

500 0.947 0.949 0.948 0.936 0.940 0.941 0.951 0.949 0.949

1000 0.943 0.942 0.942 0.925 0.929 0.932 0.950 0.951 0.951

0.8 100 0.931 0.930 0.930 0.920 0.921 0.921 0.899 0.898 0.898

500 0.938 0.937 0.935 0.949 0.949 0.949 0.918 0.920 0.921

1000 0.951 0.951 0.951 0.954 0.954 0.954 0.930 0.935 0.935

sample sizes, confirming the validity of the test under correct specification. However, for DGP2 and

DGP3 we observe large size distortions for the standard Hausman test, as large as 85%. This shows

that the standard Hausman test is unreliable under misspecification of the linear model. In contrast,

the proposed robust tests is able to control type-I error uniformly across the three DGPs. We also

report size-corrected empirical rejections under the alternative. For the linear model, the standard

Hausman test has (slightly) larger power than the robust test, while for the nonlinear model DGP2,

the robust test has much larger power. For DGP3, the robust Hausman test outperforms the standard

test for low values of ρ, while for large values of ρ they have comparable powers. In all cases we

observe an empirical power that increases with the sample size and the level endogeneity, suggesting

consistency against these alternatives. Despite these simulation results and others in the Supplemental

Appendix, we stress that standard and robust Hausman tests should be viewed as complements rather

than substitutes, given that they work under different set of assumptions.

We also report in the Supplemental Appendix further simulation results for cases where Z is discrete

and X is continuous. For these DGPs g is not identified, although Assumption 3 is satisfied. These

additional simulation results provide further evidence of the excellent finite sample performance of the

TSIV and the robust Hausman test relative to their standard IV counterparts.

Overall, these simulations confirm the robustness of the proposed methods to misspecification of

the linear IV model and their adaptive behaviour when correct specification holds. Furthermore, the

TSIV estimator does not seem to be too sensitive to the choice of tuning parameters. Finally, the

proposed Hausman test is indeed robust to the misspecification of the linear model, which makes it a

reliable tool for economic applications. These finite sample robustness results confirm the claims made
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Table 5: Empirical size and size-corrected power for Standard (S) and Robust (R) Hausman tests.

DGP1 DGP2 DGP3

ρ γ n S R S R S R

0.0 0.4 100 0.068 0.051 0.142 0.038 0.054 0.016

500 0.062 0.044 0.070 0.016 0.048 0.010

1000 0.056 0.040 0.053 0.006 0.050 0.008

0.8 100 0.071 0.063 0.221 0.015 0.090 0.001

500 0.047 0.045 0.146 0.004 0.521 0.004

1000 0.060 0.054 0.110 0.001 0.850 0.002

0.3 0.4 100 0.242 0.174 0.066 0.082 0.085 0.105

500 0.802 0.718 0.174 0.292 0.243 0.284

1000 0.985 0.950 0.296 0.549 0.414 0.492

0.8 100 0.952 0.896 0.108 0.562 0.671 0.727

500 1.000 0.999 0.216 0.924 0.982 1.000

1000 1.000 1.000 0.340 0.942 0.992 1.000

0.9 0.4 100 0.958 0.754 0.281 0.386 0.412 0.418

500 1.000 0.993 0.744 0.952 0.930 0.938

1000 1.000 1.000 0.932 0.994 0.999 0.997

0.8 100 1.000 0.992 0.370 0.956 1.000 0.998

500 1.000 1.000 0.739 0.980 1.000 1.000

1000 1.000 1.000 0.910 0.980 1.000 1.000

for the TSIV estimator as a nonparametric analog to OLS under endogeneity.

6 Estimating the Elasticity of Intertemporal Substitution

In its log-linearized version, the Consumption-based Capital Asset Pricing Model (CCAPM) leads to

the equation

∆ct+1 = α+ ψrt+1 + Ut, E[Ut | Zt] = 0 a.s., (29)

where ψ is the elasticity of intertemporal substitution (EIS), ∆ct+1 is the growth rate of consumption

(the first difference in log real consumption per capita), rt+1 is the real interest rate at time t + 1, α

is a constant and Zt is a vector of variables in the agent’s information set at time t. The parameters

β0 = (α,ψ)′ can be estimated from (29) by several estimation strategies; see, e.g., Hansen and Singleton

(1983). Yogo (2004), using data from Campbell (2003), applied Two-Step Least Squares (TSLS), among

other methods, to obtain estimates of ψ across different countries, arguing that in most cases the TSLS

is subject to weak identification. Here we focus on quarterly US interest rate data, for which there is

empirical evidence suggesting identification (the first-stage F statistic is 15.5). The data set is available

at Motohiro Yogo’s web page. A full description of the data is given in Campbell (2003).4

Following Yogo (2004), we use as instruments Zt = (rt−1, πt−1,∆ct−1, dpt−1), where rt is the nominal

interest rate, πt is inflation, and dpt is the log dividend-price ratio. The sample size is n = 206. The

4 It should be possible to extend our asymptotic results above to strictly stationary and ergodic time series data,

although doing so is beyond the scope of this paper. Following much of the literature, including Yogo (2004), we compute

standard errors assuming that the influence functions of the reported estimators are uncorrelated.
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Table 6: EIS for Quarterly US data

OLS TSLS TSIV

Jn 4 5 6

estimate 0.161 0.060 0.151 0.160 0.162

s.e. (0.054) (0.095) (0.092) (0.099) (0.101)

Hausman p-value 0.154 0.897 0.995 0.984

TSLS point estimate of ψ is 0.06, with a standard error of 0.09. We compare the TSLS with the proposed

TSIV. To deal with the curse of dimensionality, we estimate h0(Z) with an additive nonparametric

model, h0(Zt) = h01(Zt1) + · · · + h04(Zt4). Specifically, we follow the implementation in our Monte

Carlo and use B-splines with 4, 5 or 6 knots for each instrument, leading to Jn = 12, 15, 18, respectively,

Kn = 2Jn and GCV for choosing λ. The matrix Q = [qJn(Z1), ..., qJn(Zn)]′ simply concatenates the

corresponding matrix for each instrument. For estimating g0 for the TSIV’s standard errors we choose

the same Jn and Kn as before, and compute λn by GCV. Further details on implementation are given

in Section 3.4 for the case with an intercept (so X1 = Z1 ≡ 1).

Not surprisingly, our TSLS coincides with that of Yogo (2004). The TSIV is relatively much larger

than the TSLS, and closer to the OLS, while the standard errors of both IV methods are similar in

magnitude. These results are robust to the choice of Jn and Kn (we have experimented with Kn = cJn

for c between 1 and 3 and obtain qualitatively the same conclusions). If we apply our robust Hausman

test of exogeneity we obtain very large p-values. Again, this result is robust to the choice of Jn and

Kn. In contrast, the standard Hausman test leads to a p-value of 0.154.

We reach several conclusions from these results. First, the difference between the TSLS and the

TSIV suggests that nonlinearities might be important in this application (indeed, the plot of the

estimated ĝn, which is not reported here for the sake of space, reveals a marked nonlinear estimate).

Second, once one accounts for the misspecification uncertainty, the null hypothesis of exogeneity cannot

be rejected, thereby suggesting that for the purpose of estimating a log-linearized version of the Euler

equation, endogeneity bias may be a second-order concern.
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7 Appendix A: Notation, Assumptions and Preliminary Results

7.1 Notation

Define the kernel subspace N ≡ {f ∈ L2(X) : T ∗f = 0} of the operator T ∗f(z) := E[f(X)|Z = z].

Let Ts(x) := E[s(Z)|X = x] denote the adjoint operator of T ∗ and let R(T ) := {f ∈ L2(X) :

∃s ∈ L2(Z), T s = f} its range. For a subspace V, V ⊥, V and PV denote, respectively, its orthogonal

complement, its closure and its orthogonal projection operator. Let ⊗ denote Kronecker product and
let Ip denote the identity matrix of order p.

Define the Sobolev norm ‖·‖∞,η as follows. Define for any vector a of p integers the differential
operator ∂ax := ∂|a|1/∂xa11 . . . ∂x

ap
p , where |a|1 :=

∑p
i=1 ai. Let X denote a finite union of convex,

bounded subsets of Rp, with non-empty interior. For any smooth function h : X ⊂ Rp → R and some
η > 0, let η be the largest integer smaller than η, and

‖h‖∞,η := max
|a|1≤η

sup
x∈X
|∂axh(x)|+ max

|a|1=η
sup
x6=x′

|∂axh(x)− ∂axh(x′)|
|x− x′|η−η

.

Let H denote the parameter space for h, and define the identified set H0 = {h ∈ H : m(X,h) = 0 a.s.}.
The operator Th(x) := E[h(Z)|X = x] is estimated by

T̂ h(x) := Ê[h(Z)|X = x] =
n∑
i=1

(
pKn

′
(x)(P ′P )−1pKn(Xi)⊗ h(Zi)

)
.

The operator T̂ is considered as an operator from Hn to Gn ⊆ L2(X), where Gn is the linear span
of {pKn(·)}. Let En[g(W )] denote the sample mean operator, i.e. En,W [g(W )] = n−1

∑n
i g(Wi), let

||g||2n,W = En[|g(W )|2], and let 〈f, g〉n,W = n−1
∑n

i=1 f(Wi)g(Wi) be the empirical L2 inner product.

We drop the dependence on W for simplicity of notation. Denote by T̂ ∗ the adjoint operator of T̂ with

respect to the empirical inner product. Simple algebra shows for p = 1,〈
T̂ h, g

〉
n

= n−1
n∑
i=1

h(Zi)p
Kn
′
(Xi)(P

′P )−1
n∑
j=1

pKn(Xj)g(Xj)

=
〈
h, T̂ ∗g

〉
n
,

so T̂ ∗g = PHnÊ[g(X)|X = ·] = PHn T̂ g. A similar expression holds for p > 1.

With this operator notation, the first-step has the expression (where I denotes the identity operator)

ĥn =
(
T̂ ∗T̂ + λnI

)−1
T̂ ∗X̂, (30)

where X̂ = Ê[X|X = ·]. Similarly, define the Tikhonov approximation of h0

hλn = A−1
λn
T ∗X, (31)

where Aλn = T ∗T + λnI. Define also Bλn = TT ∗ + λnI. With some abuse of notation, denote the

operator norm by

‖T‖ = sup
h∈H,‖h‖≤1

‖Th‖ .
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Let G ⊆ L2(X) denote the parameter space for g. An envelop for G is a function G such that |g(x)| ≤
G(x) for all g ∈ G. Given two functions l, u, a bracket [l, u] is the set of functions f ∈ G such that
l ≤ f ≤ u. An ε-bracket with respect to ‖·‖ is a bracket [l, u] with ‖l − u‖ ≤ ε, ‖l‖ <∞ and ‖u‖ <∞
(note that u and l not need to be in G). The covering number with bracketing N[·](ε,G, ‖·‖) is the
minimal number of ε-brackets with respect to ‖·‖ needed to cover G. Define the bracketing entropy

J[·](δ,G, ‖·‖) =

∫ δ

0

√
logN[·](ε,G, ‖·‖)dε

Similarly, we define J[·](δ,H, ‖·‖). Finally, throughout C denotes a positive constant that may change

from expression to expression.

Let W = (Y,X ′, Z ′)′ be a random vector defined on a probability space (Ω,B,P). For a measurable

function f we denote Pf :=
∫
fdP,

Pnf :=
1

n

n∑
i=1

f (Wi) and Gnf :=
√
n (Pnf − Pf) .

7.2 Assumptions

The following assumptions are standard in the literature of sieve estimation; see, e.g., Newey (1997),

Chen (2007), Santos (2011), and Chen and Pouzo (2012).

Assumption A1: (i) {Yi, Xi, Zi}ni=1 is an iid sample, satisfying (1) with E[ε|Z] = 0 a.s and E[Y 2] <

∞; (ii) X has a compact support with E[|X|2] <∞; (iii) Z has a compact support; (iv) the densities
of X and Z are bounded and bounded away from zero.

Assumption A2: (i) The eigenvalues of E[pKn(X)pKn(X)′] are bounded above and away from zero;

(ii) max1≤k≤Kn ‖pk‖ ≤ C and ξ2
n,pKn = o(n), for ξn,p = supx

∣∣pKn(x)
∣∣ ; (iii) there is πn,p(h) such

that suph∈H
∥∥E[h(Z)|X = ·]− π′n,p(h)pKn(·)

∥∥ = O(K−αTn ); (iv) there is a finite constant C, such that

suph∈H,‖h‖≤1 |h(Z)− E[h(Z)|X]| ≤ ρn,p(Z,X) with E[ |ρn,p(Z,X)|2
∣∣∣X] ≤ C.

Assumption A3: (i) The eigenvalues of E[qJn(Z)qJn(Z)′] are bounded above and away from zero;

(ii) there is a sequence of closed subsets satisfying Hj ⊆ Hj+1 ⊆ H, H is closed, bounded and convex,

h0 ∈ H0, and there is a Πn(h0) ∈ Hn such that ‖Πn(h0)− h0‖ = o(1); (iii) suph∈Hn

∣∣∣‖h‖2n − ‖h‖2∣∣∣ =

oP (1); (iv) λn ↓ 0 and max{‖Πn(h0)− h0‖2 , c2
n,T } = o(λn), where cn,T =

√
Kn/n+K−αTn ; (v) Aλn is

non-singular.

Assumption A4: (i) h0 ∈ R((T ∗T )αh/2) and g0 ∈ R((TT ∗)αg/2), αh, αg > 0; (ii) max1≤j≤Jn ‖qj‖ ≤ C
and ξ2

n,jJn = o(n), for ξn,j = supz
∣∣qJn(z)

∣∣ ; (iii) supg∈G
∥∥E[g(X)|Z = ·]− π′n,q(g)qJn(·)

∥∥ = O(J
−αT∗
n ) for

some πn,q(g); (iv) supg∈G,‖g‖≤1 |g(X)− E[g(X)|Z]| ≤ ρn,q(Z,X) with E[ |ρn,q(Z,X)|2
∣∣∣Z] ≤ C; (v)

λ−1
n cn = o(1), where cn = cn,T + cn,T ∗ and cn,T ∗ =

√
Jn/n+ J

−αT∗
n ; (vi) Bλn is non-singular.
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Assumption A5: (i) E[U2
∣∣Z] < C a.s.; (ii) N[·](δ,G, ‖·‖) <∞ and J[·](δ,H, ‖·‖) <∞ for some δ > 0,

and G and H have squared integrable envelopes.

Assumption A6: (i) λ−1
n cn = o(n−1/4); (ii)

√
nλ

min(αh,2)
n = o(1) and

√
ncnλ

min(αh−1,1)
n = o(1); (iii)

h0 ∈ R(T ∗), E
[
|X − h0(Z)|4

∣∣∣X] is bounded and V ar[h0(Z)|X] is bounded and bounded away from

zero; and (iv) E[U |Z] = 0 a.s.

For regression splines ξ2
n,p = O(Kn), and hence A2(ii) requires K2

n/n→ 0, see Newey (1997). Assump-

tions A2(iii-iv) are satisfied if suph∈H ‖Th‖∞,ηh <∞ with αT = ηh/q. Assumption A3(iii) holds under

mild conditions if for example suph∈H ‖h‖ < C. Assumption A4(i) is a regularity condition that is well

discussed in the literature, see e.g. Florens, Johannes and Van Bellegem (2011). A suffi cient condition

for Assumption A5(ii) is that for some ηh > q/2 and ηg > p/2 we have suph∈H ‖h‖∞,ηh < ∞ and

supg∈G ‖g‖∞,ηg <∞; see Theorems 2.7.11 and 2.7.1 in van der Vaart and Wellner (1996). Assumptions

A6 is standard.

7.3 Preliminary Results

In all the preliminary results Assumptions 1-3 in the text are assumed to hold.

Lemma A1: Let Assumptions A1-A3 hold. Then,
∥∥∥ĥn − h0

∥∥∥ = oP (1).

Proof of Lemma A1: We proceed to verify the conditions of Theorem A.1 in Chen and Pouzo

(2012). Recall H0 = {h ∈ H : m(X,h) = 0 a.s.}. By Assumption A3, H0 is non-empty. The penalty

function P (h) = ||h||2 is strictly convex and continuous and ||m(·;h)||2 is convex and continuous. Their
Assumption 3.1(i) trivially holds sinceW = Ip. Their Assumption 3.1(iii) is A3(i-ii). Their Assumption

3.1(iv) follows from A3(ii) since

||m(·; Πn(h0))||2 ≤ ‖Πn(h0)− h0‖2 = o(1).

To verify their Assumption 3.2(c) we need to check

sup
h∈Hn

∣∣∣‖h‖2n − ‖h‖2∣∣∣ = oP (1) (32)

and ∣∣∣‖Πn(h0)‖2 − ‖h0‖2
∣∣∣ = o(1).

The last equality follows because
∣∣∣‖Πn(h0)‖2 − ‖h0‖2

∣∣∣ ≤ C ‖Πn(h0)− h0‖ = o(1). Condition (32) is

our Assumption A3(iii). Assumption 3.3 in Chen and Pouzo (2012) follows from their Lemma C.2 and

our Assumption A2. Assumption 3.4 in Chen and Pouzo (2012) is satisfied for the L2 norm. Finally,

Assumption A3(iv) completes the conditions of Theorem A.1 in Chen and Pouzo (2012), and hence

implies that
∥∥∥ĥn − h0

∥∥∥ = oP (1). �

Lemma A2: Let Assumptions A1-A4 hold. Then,
∥∥∥ĥn − h0

∥∥∥ = OP (λ
min(αh,2)
n +λ−1

n cn) and ‖ĝn − g0‖ =

oP (λ
min(αg ,2)
n + λ−1

n cn).
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Proof of Lemma A2: For simplicity of exposition we consider the case p = q = 1. The proof for

p > 1 or q > 1 follows the same steps. By the triangle inequality, with hλn defined in (31),∥∥∥ĥn − h0

∥∥∥ ≤ ∥∥∥ĥn − hλn∥∥∥+ ‖hλn − h0‖ .

Under h0 ∈ R((T ∗T )αh/2), Lemma A1(1) in Florens, Johannes and Van Bellegem (2011) yields

‖hλn − h0‖ = O(λmin(αh,2)
n ). (33)

With some abuse of notation, denote Âλn = T̂ ∗T̂ + λnI. Then, arguing as in Proposition 3.14 of

Carrasco, Florens and Renault (2006), it is shown that

ĥn − hλn = Â−1
λn
T̂ ∗(X̂ − T̂ h0) + Â−1

λn
(T̂ ∗T̂ − T ∗T )(hλn − h0), (34)

and thus, ∥∥∥ĥn − hλn∥∥∥ ≤ ∥∥∥Â−1
λn

∥∥∥∥∥∥T̂ ∗(X̂ − T̂ h0)
∥∥∥+

∥∥∥Â−1
λn

∥∥∥∥∥∥T̂ ∗T̂ − T ∗T∥∥∥ ‖hλn − h0‖ . (35)

As in Carrasco, Florens and Renault (2006),∥∥∥Â−1
λn

∥∥∥ = OP (λ−1
n ).

Since T̂ ∗ is a bounded operator ∥∥∥T̂ ∗(X̂ − T̂ h0)
∥∥∥ = OP

(∥∥∥(X̂ − T̂ h0)
∥∥∥)

= OP (cn,T ) ,

where recall cn,T = Kn/n + K−2αT
n , and where the second equality follows from an application of

Theorem 1 in Newey (1997) with y = x−h0(z) there. Note that Assumption 3 and Assumption A2(iv)

imply that V ar[y|X] is bounded (which is required in Assumption 1 in Newey (1997)). Also note

that the supremum bound in Assumption 3 in Newey (1997) can be replaced by our L2−bound in
Assumption A2(iii) when the goal is to obtain L2−rates.

On the other hand, ∥∥∥T̂ ∗T̂ − T ∗T∥∥∥ ≤ OP (∥∥∥T̂ ∗ − T ∗∥∥∥)+OP

(∥∥∥T̂ − T∥∥∥) (36)

and ∥∥∥T̂ ∗ − T ∗∥∥∥ ≤ ‖PHn‖∥∥∥T̂ − T∥∥∥+ ‖PHn − T ∗‖

= OP

(∥∥∥T̂ − T∥∥∥)+OP (cn,T ∗). (37)

We now proceed to establish rates for
∥∥∥T̂ − T∥∥∥ . As in Newey (1997), we can assume without loss of

generality that E[qJn(Z)qJn(Z)′] is the identity matrix. Then, by the triangle inequality,∥∥∥T̂ − T∥∥∥ = sup
h∈H,‖h‖≤1

∥∥∥T̂ h− Th∥∥∥
≤ sup

h∈H,‖h‖≤1

∥∥∥T̂ h− πn,p(h)pKn(·)
∥∥∥+ sup

h∈H,‖h‖≤1

∥∥E[h(Z)|X = ·]− πn,p(h)pKn(·)
∥∥

≤ sup
h∈H,‖h‖≤1

‖π̂n,p(h)− πn,p(h)‖+O(K−αTn ),
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where

π̂n,p(h) = (P ′P )−1
n∑
i=1

pKn(Xi)h(Zi).

Write

π̂n,p(h)− πn,p(h) = Q−1
2nP

′εh/n+Q−1
2nP

′(Gh − Pπn,p(h))/n,

where εh = H − Gh, H = (h(Z1), ..., h(Zn))′, and Gh = (Th(X1), ..., Th(Xn))′. Similarly to the proof

of Theorem 1 in Newey (1997), it is shown that

sup
h∈H,‖h‖≤1

∥∥Q−1
2nP

′εh/n
∥∥2

= OP (Kn/n),

where we use Assumption A2(iv) to show that

sup
h∈H,‖h‖≤1

E[εhε
′
h

∣∣X] ≤ CIn.

That is,

sup
h∈H,‖h‖≤1

E

[∣∣∣Q−1/2
2n P ′εh/n

∣∣∣2∣∣∣∣X] = sup
h∈H,‖h‖≤1

E
[
εhP (P ′P )−1P ′εh

∣∣X] /n
= sup

h∈H,‖h‖≤1
E
[
tr{P (P ′P )−1P ′εhε

′
h}
∣∣X] /n

= sup
h∈H,‖h‖≤1

tr{P (P ′P )−1P ′E[εhε
′
h

∣∣X]}/n

≤ Ctr{P (P ′P )−1P ′}/n
≤ CKn/n

Similarly, by A2(iii)

sup
h∈H,‖h‖≤1

∥∥Q−1
2nP

′(Gh − Pπn,p(h))/n
∥∥ = OP (K−αTn ).

Then, conclude
∥∥∥T̂ − T∥∥∥ = OP (cn,T ),

∥∥∥T̂ ∗T̂ − T ∗T∥∥∥ = OP (cn), where cn = cn,T + cn,T ∗ , and by (35),

(36) and (37) ∥∥∥ĥn − hλn∥∥∥ = OP
(
λ−1
n cn

)
.

The proof for ĝn is the same and hence omitted. �

Define the classes

F = {f(y, x, z) = h(z)(y − x′β0) : h ∈ H}.

and

G = {g(y, x, z) = h(z)x : h ∈ H}.

Lemma A3:

(i) Assume 0 < E[|X|2] < C. Then, N[·](ε,G, ‖·‖1) ≤ N[·](ε/ ‖X‖2 ,H, ‖·‖2).
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(ii) Assume V ar[Y −X ′β0|Z] is bounded. Then, J[·](δ,F , ‖·‖) < ∞ if J[·](δ,H, ‖·‖) < ∞ for some

δ > 0.

(iii) N[·](ε,H·G, ‖·‖1) ≤ N[·](Cε,H, ‖·‖2)×N[·](Cε,G, ‖·‖2).

Proof of Lemma A3: (i) Let [lj(Z)X,uj(Z)X] be an ε/E[|x|2] bracket for H. Then, by Cauchy-
Schwartz inequality

‖lj(Z)X − uj(Z)X‖1 ≤ ‖lj(Z)− uj(Z)‖ ‖X‖
≤ ε.

This shows (i). The proof of (ii) is analogous, and follows from

‖lj(Z)U − uj(Z)U‖ ≤ C ‖lj(Z)− uj(Z)‖ ≤ Cε,

where C is such that V ar[Y −X ′β0|Z] < C a.s. The proof of (iii) is standard and hence omitted. �

8 Appendix B: Proofs of Main Results

Proof of Lemma 2.1: The n1/2-estimability of the OLIVA implies the n1/2-estimability of the vector-

valued functional

E[Xg(X)],

which in turn implies that of the functional

E[Xjg(X)],

for each component Xj of X (i.e. X = (X1, ..., Xp)
′). By Lemma 4.1 in Severini and Tripathi (2012),

the latter implies existence of hj ∈ L2(Z) such that

E[hj(Z)|X] = Xj a.s.

This implies Assumption 3 with h(Z) = (h1(Z), ..., hp(Z))′. �

Proof of Proposition 2.2: We shall show that for any h(Z) ∈ L2(Z) such that

E[h(Z)|X] = X a.s.

the parameter β = E[h(Z)X ′]−1E[h(Z)Y ] is uniquely defined. First, it is straightforward to show

that for any such h, E[h(Z)X ′]−1 = E[XX ′]−1. Second, we can substitute Y = g0(X) + PN g(X) + ε,

where recall N ≡ {f ∈ L2(X) : T ∗f = 0} and T ∗f(z) := E[f(X)|Z = z]. Note that for all h,

E[h(Z)PN g(X)] = 0, so that

E[h(Z)Y ] = E[h(Z)g0(X)]

= E[Xg0(X)],
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for all h satisfying E[h(Z)|X] = X a.s. �

Proof of Proposition 3.3: We shall show that under the conditions of the proposition there exists a
h(Z) ∈ L2(Z) such that

E[h(Z)|X] = X a.s.

Denote π̄ = E[π(Z)]. For a binary X, and since 0 < π̄ < 1, the last display is equivalent to the system

E[Xh(Z)] = π̄ and E[(1−X)h(Z)] = 0,

or

E[h(Z)] = π̄ and E[π(Z)h(Z)] = π̄.

Each equation from the last display defines a hyperplane in h. Since π(Z) is not constant, the normal

vectors 1 and π(Z) are linearly independent (not proportional). Hence, the two hyperplanes have an

non-empty intersection, showing that there is at least one h satisfying E[h(Z)|X] = X a.s.

Moreover, by Theorem 2, pg. 65, in Luenberger (1997) the minimum norm solution is the linear

combination of 1 and π(Z) that satisfies the linear constraints, that is, h0(Z) = α + γπ(Z) such that

α and γ satisfy the 2× 2 system {
α+ γπ̄ = π̄

απ̄ + γE[π2(Z)] = π̄.

Note that this system has a unique solution, since the determinant of the coeffi cient matrix is V ar(π(Z)) >

0. Then, the unique solution is given by[
α

γ

]
=

[
1 π̄

π̄ E[π2(Z)]

]−1 [
π̄

π̄

]

=

 π̄
(

1− π̄(1−π̄)
var(π(Z))

)
π̄(1−π̄)
var(π(Z))

 .
�

Proof of Proposition 3.1: Assume without loss of generality that X is scalar and note that, by

Engl, Hanke and Neubauer (1996), h1(Z) = h0(Z) + h⊥(Z), with Cov(h0(Z), h⊥(Z)) = 0 (note

E[h0(Z)h⊥(Z)] = 0 and E[h⊥(Z)] = 0). Thus, since E[h0(Z)|X] = X and E[h1(Z)|X] = X, then

E[h⊥(Z)|X] = 0 a.s., and hence

0 = Cov(X,h⊥(Z)) = α1V ar(h⊥(Z)),

and hence, if h1 6= h0 (i.e. V ar(h⊥(Z)) > 0) then α1 = 0. �

Proof of Theorem 3.2: Write

β̂ =
(
En

[
ĥn(Zi)X

′
i

])−1 (
En

[
ĥn(Zi)Yi

])
= β0 +

(
En

[
ĥn(Zi)X

′
i

])−1 (
En

[
ĥn(Zi)Ui

])
.
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Note that

En

[
ĥn(Zi)X

′
i

]
= En

[
h0(Zi)X

′
i

]
+ oP (1)

= E
[
h0(Zi)X

′
i

]
+ oP (1), (38)

where the first equality follows from Lemma A3(i), Lemma A1, Assumption A5 and ĥn ∈ H by an

application of a Glivenko-Cantelli´s argument, and the second equality follows from the Law of Large

Numbers. The same arguments show that En
[
ĥn(Zi)Ui

]
= oP (1). Thus, β̂ is consistent for β0.

Likewise, Lemma A3(ii), Lemma A1, Assumption A5(ii) and ĥn ∈ H, yields for f̂ = ĥn(Zi)Ui and

f0 = h0(Zi)Ui,

Gnf̂ = Gnf0 + oP (1),

since the class F is a Donsker class, see Theorem 2.5.6 in van der Vaart and Wellner (1996). Then,

√
n
(
β̂ − β0

)
=
(
E
[
h0(Zi)X

′
i

]
+ oP (1)

)−1
(√

nEn [h0(Zi)Ui] +
√
nP
[{
ĥn(Zi)− h0(Zi)

}
Ui

])
. (39)

We investigate the second term, which with the notation 〈h1, h2〉 = E[h1(Z)h2(Z)] can be written as

√
nP
[{
ĥn(Zi)− h0(Zi)

}
Ui

]
=
√
n
〈
ĥn − h0, u

〉
where u(z) = E[U |Z = z] is in L2(Z) by A5(i).

From the proof of Lemma A2, and in particular (33) and (34), and Assumption A6(ii),

√
n
〈
ĥn − h0, u

〉
=
√
n
〈
ĥn − hλn , u

〉
+
√
n 〈hλn − h0, u〉

=
√
n
〈
Â−1
λn
T̂ ∗(X̂ − T̂ h0), u

〉
+OP

(√
ncnλ

min(αh−1,1)
n

)
+O

(√
nλmin(αh,2)

n

)
=
√
n
〈
Â−1
λn
T̂ ∗(X̂ − T̂ h0), u

〉
+ oP (1) .

Next, we write

√
n
〈
Â−1
λn
T̂ ∗(X̂ − T̂ h0), u

〉
=
√
n
〈
A−1
λn
T ∗(X̂ − T̂ h0), u

〉
+
√
n
〈(
Â−1
λn
−A−1

λn

)
T ∗(X̂ − T̂ h0), u

〉
+
√
n
〈
A−1
λn

(
T̂ ∗ − T ∗

)
(T̂X − T̂ h0), u

〉
+
√
n
〈(
Â−1
λn
−A−1

λn

)(
T̂ ∗ − T ∗

)
(X̂ − T̂ h0), u

〉
≡ C1n + C2n + C3n + C4n.

From the simple equality B−1−C−1 = B−1(C−B)C−1 we obtain Â−1
λn
−A−1

λn
= Â−1

λn

(
T ∗T − T̂ ∗T̂

)
A−1
λn
,

and from this and Lemma A2,

|C4n| = OP (
√
nλ−2

n c3
n) = oP (1), by A6(i);

|C3n| = OP (
√
nλ−1

n c2
n) = oP (1), by A6(i);

|C2n| = OP (
√
nλ−2

n c2
n) = oP (1), by A6(i).
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To analyze the term C1n we use Theorem 3 in Newey (1997) after writing

C1n =
√
n
〈
T̂ϕ, vn

〉
,

where ϕ = X − h0 and

vn = TA−1
λn
u. (40)

Note that

u = E[Y − β′0X
∣∣Z] = E[g0(X)− β′0X

∣∣Z],

and hence vn = TA−1
λn
T ∗∆, for ∆(X) = (g0(X)− β′0X).

Assumption A6(iii) implies Assumptions 1 and 4 in Newey (1997). Assumption A2 implies Assump-

tions 2 and 3 in Newey (1997) (with d = 0 there). Note that by Lemma A1(A.4) in Florens, Johannes

and Van Bellegem (2011)

‖vn‖ ≤
∥∥TA−1

λn
T ∗
∥∥ ‖∆‖ ≤ ‖∆‖ <∞.

Hence, Assumption 7 in Newey (1997) holds with g0 = Tϕ there. Hence, Theorem 4 in Newey (1997)

applies to C1n to conclude from its proof that

C1n = − 1√
n

n∑
i

vn(Xi)(h0(Zi)−Xi) + oP (1). (41)

We will use that g0(X)− β′0X is in R((TT ∗)αg/2), αg > 0. Note the identities

T (T ∗T + λnI)−1 T ∗ = (TT ∗ + λnI)−1 TT ∗

and

I − (TT ∗ + λnI)−1 TT ∗ = λn (TT ∗ + λnI)−1 .

Then,
1√
n

n∑
i

vn(Xi)(h0(Zi)−Xi) =
1√
n

n∑
i

(
g0(Xi)− β′0Xi

)
(h0(Zi)−Xi) + oP (1), (42)

since by Lemma A1(A1) in Florens, Johannes and Van Bellegem (2011), Assumption A4(i) and As-

sumption 3, it holds

V ar

(
1√
n

n∑
i

[
vn(Xi)−

(
g0(Xi)− β′0Xi

)]
(h0(Zi)−Xi)

)
≤ C

∥∥vn(Xi)−
(
g0(Xi)− β′0Xi

)∥∥2

= C
∥∥∥λn (TT ∗ + λnI)−1 (g0(Xi)− β′0Xi

)∥∥∥2

≤ Cλmin(αg ,2)
n .

Thus, from (39), (41) and (42)

√
n
(
β̂ − β0

)
=
(
E
[
h0(Zi)X

′
i

])−1√
nEn [m(Wi, β0, h0, g0)] + oP (1).

The asymptotic normality then follows from the standard Central Limit Theorem.
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We now show the consistency of Σ̂ = En[ĥn(Zi)X
′
i]
−1En[m̂nim̂

′
ni]En[ĥn(Zi)X

′
i]
−1.Write, withm0i =

m(Wi, β, h0, g0),

En[m̂nim̂
′
ni]−En[m0im

′
0i] = En[m0i(m̂

′
ni−m′0i)]+En[(m̂ni−m0i)m

′
0i]+En[(m̂ni−m0i)(m̂ni−m0i)

′] (43)

and

m̂ni −m0i = (Y − g0(Xi))
(
ĥn(Zi)− h0(Zi)

)
− (ĝn(Xi)− g0(Xi))

(
ĥn(Zi)−Xi

)
.

By Cauchy-Schwartz inequality and Assumption 2∣∣∣∣En [m0i (Y − g0(Xi))
(
ĥn(Zi)− h0(Zi)

)′]∣∣∣∣2 ≤ CEn [∣∣∣ĥn(Zi)− h0(Zi)
∣∣∣2] .

The class of functions

{|h(z)− h0|2 : h ∈ H}

is Glivenko-Cantelli under the conditions on H, and thus En
[∣∣∣ĥn(Zi)− h0(Zi)

∣∣∣2] = oP (1) by Lemma

A1. Likewise, ∣∣∣∣En [m′0i (ĝn(Xi)− g0(Xi))
(
ĥn(Zi)−Xi

)′]∣∣∣∣2 ≤ CEn [|ĝn(Xi)− g0(Xi)|2
]

= oP (1),

by Assumption A5(ii) and Lemma A1. Other terms in (43) are analyzed similarly, to conclude that

they are oP (1). Together with (38), this implies the consistency of Σ̂. �

Proof of Theorem 4.1: We first show that the OLS first-stage estimator α̂ = (α̂′1, α̂2)′ of α0 =

(α′1, α2)′ in the regression

X2 = α′1X1 + α2ĥ2n(Z) + e,

satisfies
√
n(α̂− α0) = OP (1). Note e = V − α2(ĥ2n(Z)− h20(Z)), and denote ĥn(Z) = (X ′1, ĥ2n(Z))′

and h0(Z) = (X ′1, h20(Z))′. Then,

√
n(α̂− α0) =

(
En

[
ĥ′nĥ

′
n

])−1√
nEn

[
ĥne
]
.

Lemma A2 and a Glivenko-Cantelli´s argument imply En
[
ĥnĥ

′
n

]
= En [h0(Z)h′0(Z)] + oP (1) = OP (1).

By
∥∥∥ĥ2n − h20

∥∥∥ = oP (n−1/4), it holds

√
nEn

[
ĥn(Z)e

]
=
√
nEn

[
ĥn(Z)V

]
− α2

√
nEn

[
ĥn(Z)(ĥ2n(Z)− h20(Z))

]
=
√
nEn [h0(Z)V ]− α2

√
nEn

[
h0(Z)(ĥ2n(Z)− h20(Z))

]
+
√
nEn

[
(ĥn(Z)− h0(Z))V

]
+ oP (1)

≡ A1 − α2A2 +A3 + oP (1).

The standard central limit theorem implies A1 = OP (1).
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An empirical processes argument shows

A2 =
√
nE
[
h0(Z)(ĥ2n(Z)− h20(Z))

]
+ oP (1).

By A6(ii),

√
nE
[
h0(Z)(ĥ2n(Z)− h20(Z))

]
=
√
nE
[
h0(Z)(ĥ2n(Z)− hλn(Z))

]
+
√
nE [h0(Z)(hλn(Z)− h20(Z))]

=
√
nE
[
h0(Z)(ĥ2n(Z)− hλn(Z))

]
+ oP (1).

While (34) and A6(ii) yield

A2 =
√
nE
[
h0(Z)Â−1

λn
T̂ ∗(X̂ − T̂ h0)(Z)

]
+ oP (1)

=
√
nE
[
h0(Z)A−1

λn
T ∗(X̂ − T̂ h0)(Z)

]
+ oP (1)

≡
√
nE
[
v(Z)(X̂ − T̂ h0)(Z)

]
+ oP (1),

where v(Z) = TA−1
λn
h0(Z). By h0 ∈ R(T ∗), h0 = T ∗ψ for some ψ with ‖ψ‖ < ∞, then by Lemma

A1(A.4) in Florens, Johannes and Van Bellegem (2011)

‖v‖ ≤
∥∥TA−1

λn
T ∗
∥∥ ‖ψ‖

≤ ‖ψ‖ <∞.

Then, by Theorem 3 in Newey (1997), A2 = OP (1). A similar argument as for A2 shows A3 = OP (1),

because E[V |Z] ∈ R(T ∗). Thus, combining the previous bounds we obtain
√
n(α̂− α0) = OP (1).

We proceed now with second step estimator. Denote Ŝ = (X, V̂ )′ and θ = (β′, ρ)′. Let θ̂ denote the

OLS of Y on Ŝ. Since, since under the null ρ = 0, then

θ̂ =
(
En

[
ŜŜ′

])−1
En

[
ŜY
]

= θ +
(
En

[
ŜŜ′

])−1
En

[
ŜU
]

= θ +
(
E
[
SS′

])−1
En [SU ] +

(
E
[
SS′

])−1
En

[
(Ŝ − S)U

]
+ oP (n−1/2)

= θ +
(
E
[
SS′

])−1
En [SU ] + oP (n−1/2),

where the last equality follows because

√
nEn

[
(V̂ − V )U

]
=
√
n(α̂− α0)′En [h0(Z)U ] + α̂2

√
nEn

[
U(ĥ2n(Z)− h20(Z))

]
= OP (1)× oP (1) +OP (1)× oP (1),

with the term
√
nEn

[
U(ĥ2n(Z)− h20(Z))

]
being oP (1) because by A6(iv)

√
nEn

[
U(ĥ2n(Z)− h20(Z))

]
=
√
nP
[
U(ĥ2n(Z)− h20(Z))

]
+ oP (1)

= oP (1).

Thus, the standard asymptotic normality for the OLS estimator applies. �
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