TINBERGEN INSTITUTE

Fundamental Mathematics

Linear Algebra Preparatory Test 1

Question 1

Let

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & -1 & -1 \end{pmatrix}, \quad b_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} \quad \text{and} \quad b_2 = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}.$$

- a. Find the rank of A.
- b. Find a basis of the row space RS(A) and the column space CS(A) of A.
- c. Show that RS(A) and CS(A) are each planes in \mathbb{R}^3 .
- d. Find Cartesian equations for both RS(A) and CS(A).
- e. Show that RS(A) and CS(A) are different subspaces of A.
- f. Find a basis for the null space of A and verify the rank-nullity theorem.
- g. Show that the basis vectors of the null space are orthogonal to the basis vectors of the row space of A.
- h. Without solving the equations, determine whether the system of equations $Ax = b_1$ and $Ax = b_2$ are consistent. If the system is consistent, find the general solution.
- i. If possible, express each of b_1 and b_2 as a linear combination of the columns of A.

Question 2

Let

$$A = \begin{pmatrix} 4 & 3 & -7 \\ 1 & 2 & 1 \\ 2 & 2 & -3 \end{pmatrix}, \quad v_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}.$$

- a. Show that v_1 is an eigenvector of A and find its corresponding eigenvalue.
- b. Diagonalise the matrix A by finding an invertible matrice C and a diagonal matrix Λ such that $C^{-1}AC = \Lambda$. Check your answer without computing C^{-1} .

- c. Compute det(A) from the eigenvalues.
- d. Show that A is invertible.
- e. Diagonalise A^{-1} without computing A^{-1} .

Question 3

Let

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 3 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 2 \\ 1 \\ -1 \\ 3 \end{pmatrix}.$$

- a. Starting with v_1 , use the Gram–Schmidt algorithm to find an orthonormal basis $\{u_1, u_2, u_3\}$ of the subspace of \mathbb{R}^4 that is spanned by $\{v_1, v_2, v_3\}$.
- b. Find a vector u_4 such that $\{u_1, u_2, u_3, u_4\}$ is an orthonormal basis of \mathbb{R}^4 .

Question 4

Let A be an $m \times k$ matrix with real elements. Show that $A^T A$ cannot be negative definite.

Question 5

Orthogonally diagonalise the matrix

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

and use this to sketch the curve $x^T A x = 3$ in the (x_1, x_2) -plane.