• Graduate program
    • Why Tinbergen Institute?
    • Program Structure
    • Courses
    • Course Registration
    • Recent PhD Placements
    • Admissions
    • Facilities
  • Research
  • News
  • Events
    • Events Calendar
    • Tinbergen Institute Lectures
    • Annual Tinbergen Institute Conference
    • Events Archive
    • Summer School
      • Crash Course in Experimental Economics
      • Behavioral Macro and Complexity
      • Introduction in Genome-Wide Data Analysis
      • Econometric Methods for Forecasting and Data Science
  • Times

Karabiyik, H., Palm, FranzC. and Urbain, J.P. (2019). Econometric Analysis of Panel Data Models with Multifactor Error Structures Annual Review of Economics, 11:495--522.

  • Journal
    Annual Review of Economics

Economic panel data often exhibit cross-sectional dependence, even after conditioning on appropriate explanatory variables. Two approaches to modeling cross-sectional dependence in economic panel data are often used: the spatial dependence approach, which explains cross-sectional dependence in terms of distance among units, and the residual multifactor approach, which explains cross-sectional dependence by common factors that affect individuals to a different extent. This article reviews the theory on estimation and statistical inference for stationary and nonstationary panel data with cross-sectional dependence, particularly for models with a multifactor error structure. Tests and diagnostics for testing for unit roots, slope homogeneity, cointegration, and the number of factors are provided. We discuss issues such as estimating common factors, dealing with parameter plethora in practice, testing for structural stability and nonlinearity, and dealing with model and parameter uncertainty. Finally, we address issues related to the use of these economic panel models.