• Graduate program
  • Research
  • Summer School
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From preference to choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
  • Magazine

Moraga González, J.L., Sandor, Z. and Wildenbeest, M. (2013). Semi-Nonparametric Estimation of Consumer Search Costs Journal of Applied Econometrics, 28(7):1205--1223.


  • Journal
    Journal of Applied Econometrics

SUMMARY: This paper studies the estimation of the distribution of non-sequential search costs. We show that the search cost distribution is identified by combining data from multiple markets with common search technology but varying consumer valuations, firms' costs, and numbers of competitors. To exploit such data optimally, we provide a new method based on semi-nonparametric estimation. We apply our method to a dataset of online prices for memory chips and find that the search cost density is essentially bimodal, such that a large fraction of consumers searches very little, whereas a smaller fraction searches a relatively large number of stores. {\textcopyright} 2012 John Wiley & Sons, Ltd.