• Graduate program
  • Research
  • Summer School
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From preference to choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
  • Magazine

Koopman, S., Lucas, A. and Scharth, M. (2016). Predicting time-varying parameters with parameter-driven and observation-driven models Review of Economics and Statistics, 98(1):97--110.


  • Affiliated authors
    Siem Jan Koopman, Andre Lucas
  • Publication year
    2016
  • Journal
    Review of Economics and Statistics

We verify whether Parameter-Driven and Observation-Driven classes of dynamic models can outperform each other in predicting timevarying parameters. We consider existing and new dynamic models for counts and durations, but also for volatility, intensity, and dependence parameters. In an extended Monte Carlo study, we pre@sent evidence that Observation-Driven models based on the score of the predictive likelihood function have similar predictive accuracy compared to their correctly specified Parameter-Driven counterparts. Dynamic Observation-Driven models based on predictive score updating outperform models based on conditional moments updating. Our main findings are supported by the results from an extensive empirical study in volatility forecasting.