• Graduate program
    • Why Tinbergen Institute?
    • Research Master
    • Admissions
    • Course Registration
    • Facilities
    • PhD Vacancies
    • Selected PhD Placements
    • Research Master Business Data Science
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni

Blasques, F., Gorgi, P. and Koopman, S.J. (2021). Missing observations in observation-driven time series models Journal of Econometrics, 221(2):542--568.


  • Journal
    Journal of Econometrics

We argue that existing methods for the treatment of missing observations in time-varying parameter observation-driven models lead to inconsistent inference. We provide a formal proof of this inconsistency for a Gaussian model with time-varying mean. A Monte Carlo simulation study supports this theoretical result and illustrates how the inconsistency problem extends to score-driven and, more generally, to observation-driven models, which include well-known models for conditional volatility. To overcome the problem of inconsistent inference, we propose a novel estimation procedure based on indirect inference. This easy-to-implement method delivers consistent inference. The asymptotic properties of the new method are formally derived. Our proposed estimation procedure shows a promising performance in a Monte Carlo simulation exercise as well as in an empirical study concerning the measurement of conditional volatility from financial returns data.