• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • Course Registration
      • Facilities
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Bos, C., Janus, P. and Koopman, S. (2012). Spot Variance Path Estimation and its Application to High Frequency Jump Testing Journal of Financial Econometrics, 10(2):354--389.


  • Journal
    Journal of Financial Econometrics

This paper considers spot variance path estimation from datasets of intraday high-frequency asset prices in the presence of diurnal variance patterns, jumps, leverage effects, and microstructure noise. We rely on parametric and nonparametric methods. The estimated spot variance path can be used to extend an existing high-frequency jump test statistic, to detect arrival times of jumps, and to obtain distributional characteristics of detected jumps. The effectiveness of our approach is explored through Monte Carlo simulations. It is shown that sparse sampling for mitigating the impact of microstructure noise has an adverse effect on both spot variance estimation and jump detection. In our approach, we can analyze high-frequency price observations that are contaminated with microstructure noise and rounding effects without the need for sparse sampling. An empirical illustration is presented for the intraday EUR/USD exchange rates. Our main finding is that fewer jumps are detected when sampling intervals increase. {\textcopyright} The Author 2012. Published by Oxford University Press. All rights reserved.