• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • Course Registration
      • Facilities
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Banachewicz, K. and Lucas, A. (2008). Quantile Forecasting for Credit Risk Management Using Possibly Mis-specified Hidden Markov Models Journal of Forecasting, 27:566--586.


  • Journal
    Journal of Forecasting

Recent models for credit risk management make use of hidden Markov models (HMMs). HMMs are used to forecast quantiles of corporate default rates. Little research has been done on the quality of such forecasts if the underlying HMM is potentially misspecified. In this paper, we focus on misspecification in the dynamics and dimension of the HMM. We consider both discrete- and continuous-state HMMs. The differences are substantial. Underestimating the number of discrete states has an economically significant impact on forecast quality. Generally speaking, discrete models underestimate the high-quantile default rate forecasts. Continuous-state HMMs, however, vastly overestimate high quantiles if the true HMM has a discrete state space. In the reverse setting the biases are much smaller, though still substantial in economic terms. We illustrate the empirical differences using US default data. Copyright {\textcopyright}2008 John Wiley & Sons, Ltd.