• Graduate program
    • Why Tinbergen Institute?
    • Research Master
    • Admissions
    • Course Registration
    • Facilities
    • PhD Vacancies
    • Selected PhD Placements
    • Research Master Business Data Science
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni

Broda, S., Haas, M., Krause, J., Paolella, M. and Steude, S. (2013). Stable mixture GARCH models Journal of Econometrics, 172(2):292--306.


  • Affiliated author
    Simon Broda
  • Publication year
    2013
  • Journal
    Journal of Econometrics

A new model class for univariate asset returns is proposed which involves the use of mixtures of stable Paretian distributions, and readily lends itself to use in a multivariate context for portfolio selection. The model nests numerous ones currently in use, and is shown to outperform all its special cases. In particular, an extensive out-of-sample risk forecasting exercise for seven major FX and equity indices confirms the superiority of the general model compared to its special cases and other competitors. Estimation issues related to problems associated with mixture models are discussed, and a new, general, method is proposed to successfully circumvent these. The model is straightforwardly extended to the multivariate setting by using an independent component analysis framework. The tractability of the relevant characteristic function then facilitates portfolio optimization using expected shortfall as the downside risk measure.