• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • Course Registration
      • Facilities
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Félix, L., Kräussl, R. and Stork, P. (2020). Implied volatility sentiment: a tale of two tails Quantitative Finance, 20(5):823--849.


  • Affiliated author
    Philip Stork
  • Publication year
    2020
  • Journal
    Quantitative Finance

We propose a sentiment measure jointly derived from out-of-the-money index puts and single stock calls: implied volatility (IV-) sentiment. In contrast to implied correlations, our measure uses information from the tails of the risk-neutral densities from these two markets rather than across their entire moneyness structures. We find that IV-sentiment measure adds value over and above traditional factors in predicting the equity risk premium out-of-sample. Forecasting results are superior when constrained ensemble models are used vis-à-vis unregularized machine learning techniques. In a mean-reversion strategy, our IV-sentiment measure delivers economically significant results, with limited exposure to a set of cross-sectional equity factors, including Fama and French's five factors, the momentum factor and the low-volatility factor, and seems valuable in preventing momentum crashes. Our novel measure reflects overweight of tail events, which we interpret as a behavioral bias. However, we cannot rule out a risk-compensation rationale.