• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • Course Registration
      • Facilities
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Kunst, R. and Franses, \.H. (2015). Asymmetric time aggregation and its potential benefits for forecasting annual data Empirical Economics, 49(1):363--387.


  • Journal
    Empirical Economics

For many economic time-series variables that are observed regularly and frequently, for example weekly, the underlying activity is not distributed uniformly across the year. For the aim of predicting annual data, one may consider temporal aggregation into larger subannual units based on an activity timescale instead of calendar time. Such a scheme may strike a balance between annual modeling (which processes little information) and modeling at the finest available frequency (which may lead to an excessive parameter dimension), and it may also outperform modeling calendar time units (with some months or quarters containing more information than others). We suggest an algorithm that performs an approximate inversion of the inherent seasonal time deformation. We illustrate the procedure using two exemplary weekly time series.