• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • Course Registration
      • PhD Vacancies
      • Selected PhD Placements
    • Facilities
    • Research Master Business Data Science
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Karlsson Linnér, R. and Koellinger, PhilippD. (2022). Genetic risk scores in life insurance underwriting Journal of Health Economics, 81:1--15.


  • Affiliated author
    Philipp Koellinger
  • Publication year
    2022
  • Journal
    Journal of Health Economics

Genetic tests that predict the lifetime risk of common medical conditions are fast becoming more accurate and affordable. The life insurance industry is interested in using predictive genetic tests in the underwriting process, but more research is needed to establish whether this nascent form of genetic testing can refine the process over conventional underwriting factors. Here, we perform Cox regression of survival on a battery of genetic risk scores for common medical conditions and mortality risks in the Health and Retirement Study, without returning results to participants. Adjusted for covariates in a relevant insurance scenario, the scores could improve mortality risk classification by identifying 2.6 years shorter median lifespan in the highest decile of total genetic liability. We conclude that existing genetic risk scores can already improve life insurance underwriting, which stresses the urgency of policymakers to balance competing interests between stakeholders as this technology develops.