• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • Course Registration
      • PhD Vacancies
      • Selected PhD Placements
    • Facilities
    • Research Master Business Data Science
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Oosterwijk, T., Schmand, D. and Schröder, M. (2024). Bicriteria Nash flows over time Games and Economic Behavior, 147:19--37.


  • Journal
    Games and Economic Behavior

Flows over time are a natural way to incorporate flow dynamics that arise in various applications such as traffic networks. In this paper we introduce a natural variant of the deterministic fluid queuing model in which users aim to minimize their costs subject to arrival at their destination before a pre-specified deadline. We determine the existence and the structure of Nash flows over time and fully characterize the price of anarchy for this model. The price of anarchy measures the ratio of the quality of the equilibrium and the quality of the optimum flow, where we evaluate the quality using two different natural performance measures: the throughput for a given deadline and the makespan for a given amount of flow. While it turns out that both prices of anarchy can be unbounded in general, we provide tight bounds for the important subclass of parallel path graphs.