• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • Course Registration
      • Facilities
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Güney, E., Leitner, M., Ruthmair, M. and Sinnl, M. (2021). Large-scale influence maximization via maximal covering location European Journal of Operational Research, 289(1):144--164.


  • Journal
    European Journal of Operational Research

Influence maximization aims at identifying a limited set of key individuals in a (social) network which spreads information based on some propagation model and maximizes the number of individuals reached. We show that influence maximization based on the probabilistic independent cascade model can be modeled as a stochastic maximal covering location problem. A reformulation based on Benders decomposition is proposed and a relation between obtained Benders optimality cuts and submodular cuts for correspondingly defined subsets is established. We introduce preprocessing tests, which allow us to remove variables from the model and develop efficient algorithms for the separation of Benders cuts. Both aspects are shown to be crucial ingredients of the developed branch-and-cut algorithm since real-life social network instances may be very large. In a computational study, the considered variants of this branch-and-cut algorithm outperform the state-of-the-art approach for influence maximization by orders of magnitude.