• Graduate program
    • Why Tinbergen Institute?
    • Program Structure
    • Courses
    • Course Registration
    • Facilities
    • Admissions
    • Recent PhD Placements
  • Research
  • News
  • Events
    • Summer School
      • Summer School
      • Behavioral Macro and Complexity
      • Climate Change
      • Econometrics and Data Science Methods for Business, Economics and Finance
    • Events Calendar
    • Tinbergen Institute Lectures
    • Annual Tinbergen Institute Conference
    • Events Archive
  • Alumni
  • Times
Home | Events Archive | Inference under Shape Restrictions

Inference under Shape Restrictions

  • Series
    Seminars Econometric Institute
  • Speaker(s)
    Joachim Freyberger (University of Wisconsin-Madison, United States)
  • Field
  • Location
    Erasmus University Rotterdam, Tinbergen Building, Room H10-31
  • Date and time

    November 15, 2018
    16:00 - 17:00

We propose a uniformly valid inference method for an unknown function or parameter vector satisfying certain shape restrictions. The method applies very generally, namely to a wide range of finite dimensional and nonparametric problems, such as regressions or instrumental variable estimation, to both kernel or series estimators, and to many different shape restrictions. A major application of our inference method is to construct uniform confidence bands for an unknown function of interest. Our confidence bands are asymptotically equivalent to standard unrestricted confidence bands if the true function strictly satisfies all shape restrictions, but they can be much smaller if some of the shape restrictions are binding or close to binding. We illustrate these sizable width gains as well as the wide applicability of our method in Monte Carlo simulations and in an empirical application.