• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • All Placement Records
      • PhD Vacancies
    • Facilities
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community
Home | Events Archive | Inference under Shape Restrictions
Seminar

Inference under Shape Restrictions


  • Series
    Seminars Econometric Institute
  • Speaker(s)
    Joachim Freyberger (University of Wisconsin-Madison, United States)
  • Field
    Econometrics
  • Location
    Erasmus University Rotterdam, Tinbergen Building, Room H10-31
    Rotterdam
  • Date and time

    November 15, 2018
    16:00 - 17:00

We propose a uniformly valid inference method for an unknown function or parameter vector satisfying certain shape restrictions. The method applies very generally, namely to a wide range of finite dimensional and nonparametric problems, such as regressions or instrumental variable estimation, to both kernel or series estimators, and to many different shape restrictions. A major application of our inference method is to construct uniform confidence bands for an unknown function of interest. Our confidence bands are asymptotically equivalent to standard unrestricted confidence bands if the true function strictly satisfies all shape restrictions, but they can be much smaller if some of the shape restrictions are binding or close to binding. We illustrate these sizable width gains as well as the wide applicability of our method in Monte Carlo simulations and in an empirical application.