• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • All Placement Records
      • PhD Vacancies
    • Facilities
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community
Home | Events Archive | Inference under Shape Restrictions
Seminar

Inference under Shape Restrictions


  • Location
    UvA - E-building, Roetersstraat 11, Room TBA
    Amsterdam
  • Date and time

    November 16, 2018
    16:00 - 17:15

We propose a uniformly valid inference method for an unknown function or parameter vector satisfying certain shape restrictions. The method applies very generally, namely to a wide range of nite dimensional and nonparametric problems, such as regressions or instrumental variable estimation, to both kernel or series estimators, and to many dierent shape restrictions. One application of our inference method is to construct uniform condence bands for an unknown function of interest. These bands are build around a shape restricted estimator and the upper and lower bound functions are consistent with the shape restrictions. Moreover, the bands are asymptotically equivalent to standard unrestricted condence bands if the true function strictly satises all shape restrictions, but they can be much smaller if some of the shape restrictions are binding or close to binding. We illustrate these sizable width gains as well as the wide applicability of our method in Monte Carlo simulations and in an empirical application. Keywords: Shape restrictions, inference, nonparametric, uniform condence bands. Joint with Brandon Reeves.