• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • All Placement Records
      • PhD Vacancies
    • Facilities
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community
Home | Events Archive | Confidence set for group membership
Seminar

Confidence set for group membership


  • Series
    Seminars Econometric Institute
  • Speaker(s)
    Andreas Dzemski (Gothenburg University, Denmark)
  • Field
    Econometrics
  • Location
    Erasmus University, Polak Building, Room 1-17
    Rotterdam
  • Date and time

    May 09, 2019
    16:00 - 17:00

Abstract:

We develop new procedures to quantify the statistical uncertainty of data-driven clustering algorithms. In our panel setting, each unit belongs to one of a finite number of latent groups with group-specific regression curves. We propose methods for computing unit-wise and joint confidence sets for group membership. The unit-wise sets give possible group memberships for a given unit and the joint sets give possible vectors of group memberships for all units. We also propose an algorithm that can improve the power of our procedures by detecting units that are easy to classify. The confidence sets invert a test for group membership that is based on a characterization of the true group memberships by a system of moment inequalities. To construct the joint confidence, we solve a high-dimensional testing problem that tests group membership simultaneously for all units. We justify this procedure under N,T→∞ asymptotics where we allow T to be much smaller than N . As part of our theoretical arguments, we develop new simultaneous anti-concentration inequalities for the MAX and the QLR statistics. Monte Carlo results indicate that our confidence sets have adequate coverage and are informative. We illustrate the practical relevance of our confidence sets in two applications.

https://arxiv.org/abs/1801.00332