• Graduate program
  • Research
  • Summer School
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
  • Magazine
Home | Events Archive | Confidence set for group membership
Seminar

Confidence set for group membership


  • Series
    Seminars Econometric Institute
  • Speaker(s)
    Andreas Dzemski (Gothenburg University, Denmark)
  • Field
    Econometrics
  • Location
    Erasmus University, Polak Building, Room 1-17
    Rotterdam
  • Date and time

    May 09, 2019
    16:00 - 17:00

Abstract:

We develop new procedures to quantify the statistical uncertainty of data-driven clustering algorithms. In our panel setting, each unit belongs to one of a finite number of latent groups with group-specific regression curves. We propose methods for computing unit-wise and joint confidence sets for group membership. The unit-wise sets give possible group memberships for a given unit and the joint sets give possible vectors of group memberships for all units. We also propose an algorithm that can improve the power of our procedures by detecting units that are easy to classify. The confidence sets invert a test for group membership that is based on a characterization of the true group memberships by a system of moment inequalities. To construct the joint confidence, we solve a high-dimensional testing problem that tests group membership simultaneously for all units. We justify this procedure under N,T→∞ asymptotics where we allow T to be much smaller than N . As part of our theoretical arguments, we develop new simultaneous anti-concentration inequalities for the MAX and the QLR statistics. Monte Carlo results indicate that our confidence sets have adequate coverage and are informative. We illustrate the practical relevance of our confidence sets in two applications.

https://arxiv.org/abs/1801.00332