• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • All Placement Records
      • PhD Vacancies
    • Facilities
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community
Home | Events Archive | Local Whittle Analysis of Stationary Unbalanced Fractional Cointegration Systems
Seminar

Local Whittle Analysis of Stationary Unbalanced Fractional Cointegration Systems


  • Series
    Seminars Econometric Institute
  • Speaker(s)
    Dumitrescu Elena Ivona (Université Paris Nanterre, France)
  • Field
    Econometrics
  • Location
    Erasmus University, Polak Building, Room 2-14
    Rotterdam
  • Date and time

    May 23, 2019
    16:00 - 17:00

Abstract:

In this paper we propose a local Whittle estimator of stationary bivariate unbalanced fractional cointegration systems. Unbalanced cointegration refers to the situation where the observables have different integration orders, but their filtered versions have equal integration orders and are cointegrated in the usual sense. Based on the frequency
domain representation of the unbalanced version of Phillips’ triangular system, we develop a semiparametric approach to jointly estimate the unbalance parameter, the long run coefficient, and the integration orders of the regressand and cointegrating errors. The paper establishes the consistency and asymptotic normality of this estimator. We find a peculiar rate of convergence for the unbalance estimator (possibly faster than root-n) and a singular joint limiting distribution of the unbalance and long-run coefficients. Its good finite-sample properties are emphasized through Monte Carlo experiments. We illustrate the relevance of the developed estimator for financial data in an empirical application to the information flowing between the crude oil spot and CME-NYMEX markets.

Co-author: Gilles de Truchis and Florent Dubois