Home | Events Archive | Density Forecasts in Panel Data Models: A Semiparametric Bayesian Perspective
Seminar

Density Forecasts in Panel Data Models: A Semiparametric Bayesian Perspective


  • Series
    Econometrics Seminars and Workshop Series
  • Speaker(s)
    Laura Liu (Indiana University Bloomington, United States)
  • Field
    Econometrics
  • Location
    Tinbergen Institute Amsterdam (Gustav Mahlerplein 117), Room 1.60
    Amsterdam
  • Date and time

    October 04, 2019
    16:00 - 17:15

This paper constructs individual-specific density forecasts for a panel of firms or households using a dynamic linear model with common and heterogeneous coefficients and cross-sectional heteroskedasticity. The panel considered in this paper features a large cross-sectional dimension N but short time series T. Due to the short T, traditional methods have difficulty in disentangling the heterogeneous parameters from the shocks, which contaminates the estimates of the heterogeneous parameters. To tackle this problem, I assume that there is an underlying distribution of heterogeneous parameters, model this distribution nonparametrically allowing for correlation between heterogeneous parameters and initial conditions as well as individual-specific regressors, and then estimate this distribution by pooling the information from the whole cross-section together. Theoretically, I prove that both the estimated common parameters and the estimated distribution of the heterogeneous parameters achieve posterior consistency, and that the density forecasts asymptotically converge to the oracle forecast. Methodologically, I develop a simulation-based posterior sampling algorithm specifically addressing the nonparametric density estimation of unobserved heterogeneous parameters. Monte Carlo simulations and an application to young firm dynamics demonstrate improvements in density forecasts relative to alternative approaches.