Using Stochastic Processes for Causal Inference
-
SeriesSeminars Econometric Institute
-
Speaker(s)Florian Gunsilius (MIT, United States)
-
FieldEconometrics
-
LocationErasamus University, Polak Building, Room 2-14
Rotterdam -
Date and time
November 07, 2019
16:00 - 17:30
Abstract
We provide a framework for identification, estimation, and testing in general causal models with endogeneity by rephrasing the instrumental variable model as dependent stochastic processes. This shift in perspective has analytical benefits and allows us to solve several open problems in the literature.
First, we provide a
proof of Pearl's conjecture, showing that the validity of an instrument cannot
be tested without structural assumptions when the treatment is continuous;
using the stochastic process framework, we are furthermore able to show that
already weak continuity- or monotonicity restrictions reestablish testability.
Second, we provide a tractable procedure for estimating sharp
bounds on causal effects which is flexible enough to incorporate structural
assumptions into the estimation process in a unified manner.
It is based on the stochastic process representation of
instrumental variable models and constructs an infinite dimensional linear
program on the paths of these processes, the solution to which provides the
counterfactual bounds. Finally, we also point to further applications of this
framework: dynamic causal effects and continuous analogues of the LATE concept.
About Florian Gunsilius
Florian Gunsilius is aPostdoctoral Associate in the Department of Economics at MIT. I will join
the Department of Economics at the University of
Michigan Opens external as an Assistant Professor in the Fall
of 2020.