• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • All Placement Records
      • PhD Vacancies
    • Facilities
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community
Home | Events Archive | A Contextual Bandit Algorithm for Linear Mixed Effects Models
Research Master Pre-Defense

A Contextual Bandit Algorithm for Linear Mixed Effects Models


  • Series
    Research Master Defense
  • Speaker
    Hong Deng
  • Location
    Online
  • Date and time

    August 28, 2020
    15:00 - 16:00

The thesis generalizes the linear contextual bandit problems for potentially individual-clustered data. Upper confidence bound-typed bandit algorithms are widely used for contextually dependent decisions, such as customized recommender systems; however, the correlations of observations within individuals are rarely discussed in prior work. To allow for the presence of individual heterogeneity, linear mixed effects models are imposed for the reward generation, and a learning algorithm taking into account individual heterogeneity, called LIME-UCB, is proposed. The algorithm constructs the confidence interval by combing information across and within individuals, and achieves efficient learning for data with high level of individual heterogeneity.