• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • All Placement Records
      • PhD Vacancies
    • Facilities
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community
Home | Events Archive | Testing for Observation-dependent Regime Switchingin Mixture Autoregressive Models
Seminar

Testing for Observation-dependent Regime Switchingin Mixture Autoregressive Models


  • Location
    Online
  • Date and time

    October 23, 2020
    16:00 - 17:15

Testing for regime switching when the regime switching probabilities are specified either as constants (‘mixture models’) or are governed by a finite-state Markov chain (‘Markov switching models’) are long-standing problems that have also attracted recent interest. This paper considers testing for regime switching when the regime switching probabilities are time-varying and depend on observed data (‘observation-dependent regime switching’). Specifically, we consider the likelihood ratio test for observation-dependent regime switching in mixture autoregressive models. The testing problem is highly nonstandard, involving unidentified nuisance parameters under the null, parameters on the boundary, singular information matrices, and higher-order approximations of the log-likelihood. We derive the asymptotic null distribution of the likelihood ratio test statistic in a general mixture autoregressive setting using high-level conditions that allow for various forms of dependence of the regime switching probabilities on past observations, and we illustrate the theory using two particular mixture autoregressive models. The likelihood ratio test has a nonstandard asymptotic distribution that can easily be simulated, and Monte Carlo studies show the test to have good finite sample size and power properties.Joint work with Pentti Saikkonen (University of Helsinki, Finland).

JEL classification:C12, C22, C52.

Keywords:Likelihood ratio test, singular information matrix, higher-order approximation of thelog-likelihood, logistic mixture autoregressive model, Gaussian mixture autoregressive model

View full publication here.