• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • All Placement Records
      • PhD Vacancies
    • Facilities
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community
Home | Events Archive | Bounding Program Benefits when Participation is Misreported
Seminar

Bounding Program Benefits when Participation is Misreported


  • Location
    University of Amsterdam, room E5.22
    Amsterdam
  • Date and time

    October 01, 2021
    16:00 - 17:15

Abstract: Instrumental variables are commonly used to estimate treatment effects in case of noncompliance. However, program participation is often misreported in survey data, and standard techniques are not sufficient to point-identify and consistently estimate the effects of interest. In this paper, we first derive a new link between the true and mismeasured effect, which is mediated by a parameter of the misclassification probabilities. Second, we provide an instrumental variable method to partially identify the heterogeneous treatment effects when noncompliance and the misreporting of treatment status are present. Third, we formalize a strategy to combine external information about misclassification probabilities of treatment status to tighten the bounds or obtain a point estimate. Finally, we use our new Stata command, ivbounds, and obtain two novel results of the benefits of participating in the 401(k) pension plan on savings. Our method has several applications. First, it can be used as the leading identification strategy in any setting where the practitioner knows that the endogenous binary treatment is not well measured. Second, it can be used as the leading robustness check in case misreporting is only suspected. Third, it can assess the sensitivity of program benefits under different assumptions of the misclassification probabilities.


If you want to partake, please contact Frank Kleibergen via f.r.kleibergen@uva.nl