• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • All Placement Records
      • PhD Vacancies
    • Facilities
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community
Home | Events Archive | Robust Observation-Driven Models Using Proximal-Parameter Updates
Seminar

Robust Observation-Driven Models Using Proximal-Parameter Updates


  • Location
    University of Amsterdam, room E5.22
    Amsterdam
  • Date and time

    November 04, 2022
    12:30 - 13:30

Abstract
We propose a novel observation-driven modeling framework that allows for timevariation in the model’s parameters using a proximal-parameter (ProPar) update.The ProPar update is the solution to an optimization problem that maximizes thelogarithmic observation density with respect to the parameter, while penalizing thesquared distance of the parameter from its one-step-ahead prediction. The asso-ciated first-order condition has the form of an implicit stochastic-gradient update;replacing this implicit update with its explicit counterpart yields the popular classof score-driven models. Key advantages of the ProPar setup are stronger invertibil-ity properties (especially under model misspecification) as well as extended (globalrather than local) optimality properties. For the class of postulated observation den-sities whose logarithm is concave, ProPar’s robustness is evident from its (i) mutedresponse to large shocks in endogenous and exogenous variables, (ii) stability un-der poorly specified learning rates, and (iii) global contractivity towards a pseudo-truth—in all cases, even under model misspecification. We illustrate the generalapplicability and the practical usefulness of the ProPar framework for time-varyingregressions, volatility, and quantiles. Joint paper with Rutger-Jan Lange and Bram van Os.

Link to paper.