• Graduate program
    • Why Tinbergen Institute?
    • Research Master
    • Admissions
    • Course Registration
    • Facilities
    • PhD Vacancies
    • Selected PhD Placements
    • Research Master Business Data Science
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni

Abdellaoui, M., Baillon, A., Placido, L. and Wakker, P. (2011). The Rich Domain of Uncertainty: Source Functions and Their Experimental Implementation. American Economic Review, 101(2):695--723.


  • Affiliated authors
    Aurélien Baillon, Peter Wakker
  • Publication year
    2011
  • Journal
    American Economic Review

We often deal with uncertain events for which no probabilities are known. Several normative models have been proposed. Descriptive studies have usually been qualitative, or they estimated ambiguity aversion through one single number. This paper introduces the source method, a tractable method for quantitatively analyzing uncertainty empirically. The theoretical key is the distinction between different sources of uncertainty, within which subjective (choice-based) probabilities can still be defined. Source functions convert those subjective probabilities into willingness to bet. We apply our method in an experiment, where we do not commit to particular ambiguity attitudes but let the data speak.