• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • Course Registration
      • Facilities
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Barra, I., Borowska, A. and Koopman, S.J. (2018). Bayesian dynamic modeling of high-frequency integer price changes Journal of Financial Econometrics, 16(3):384--424.


  • Journal
    Journal of Financial Econometrics

We investigate high-frequency volatility models for analyzing intradaily tick by tick stock price changes using Bayesian estimation procedures. Our key interest is the extraction of intradaily volatility patterns from high-frequency integer price changes. We account for the discrete nature of the data via two different approaches: ordered probit models and discrete distributions. We allow for stochastic volatility by modeling the variance as a stochastic function of time, with intraday periodic patterns. We consider distributions with heavy tails to address occurrences of jumps in tick by tick discrete prices changes. In particular, we introduce a dynamic version of the negative binomial difference model with stochastic volatility. For each model, we develop a Markov chain Monte Carlo estimation method that takes advantage of auxiliary mixture representations to facilitate the numerical implementation. This new modeling framework is illustrated by means of tick by tick data for two stocks from the NYSE and for different periods. Different models are compared with each other based on the predictive likelihoods. We find evidence in favor of our preferred dynamic negative binomial difference model.