• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • Course Registration
      • Facilities
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

van Beek, M., Mandjes, M., Spreij, P. and Winands, E. (2020). Regime switching affine processes with applications to finance Finance and Stochastics, 24(2):309--333.


  • Affiliated author
    Peter Spreij
  • Publication year
    2020
  • Journal
    Finance and Stochastics

We introduce the notion of a regime switching affine process. Informally this is a Markov process that behaves conditionally on each regime as an affine process with specific parameters. To facilitate our analysis, specific restrictions are imposed on these parameters. The regime switches are driven by a Markov chain. We prove that the joint process of the Markov chain and the conditionally affine part is a process with an affine structure on an enlarged state space, conditionally on the starting state of the Markov chain. Like for affine processes, the characteristic function can be expressed in a set of ordinary differential equations that can sometimes be solved analytically. This result unifies several semi-analytical solutions found in the literature for pricing derivatives of specific regime switching processes on smaller state spaces. It also provides a unifying theory that allows us to introduce regime switching to the pricing of many derivatives within the broad class of affine processes. Examples include European options and term structure derivatives with stochastic volatility and default. Essentially, whenever there is a pricing solution based on an affine process, we can extend this to a regime switching affine process without sacrificing the analytical tractability of the affine process.