• Graduate program
  • Research
  • Summer School
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
  • Magazine

Koopman, S., Shephard, N. and Creal, D. (2009). Testing the assumptions behind importance sampling Journal of Econometrics, 149:2--11.


  • Affiliated author
    Siem Jan Koopman
  • Publication year
    2009
  • Journal
    Journal of Econometrics

Importance sampling is used in many areas of modern econometrics to approximate unsolvable integrals. Its reliable use requires the sampler to possess a variance, for this guarantees a square root speed of convergence and asymptotic normality of the estimator of the integral. However, this assumption is seldom checked. In this paper we use extreme value theory to empirically assess the appropriateness of this assumption. Our main application is the stochastic volatility model, where importance sampling is commonly used for maximum likelihood estimation of the parameters of the model. {\textcopyright} 2008 Elsevier B.V. All rights reserved.