• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • All Placement Records
      • PhD Vacancies
    • Facilities
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Kiviet, J. (2020). Testing the impossible: Identifying exclusion restrictions Journal of Econometrics, 218(2):294--316.


  • Affiliated author
    Jan Kiviet
  • Publication year
    2020
  • Journal
    Journal of Econometrics

Method of moments estimation usually implies exploiting presumed uncorrelatedness of model disturbances and identifying instrumental variables. Here, utilizing non-orthogonality conditions is examined for linear multiple cross-section simultaneous regression models. Employing flexible bounds on the correlations between disturbances and regressors one avoids: (i) adoption of often incredible and unverifiable strictly zero correlation assumptions, and (ii) imprecise inference due to possibly weak or invalid external instruments. The suggested alternative form of inference is within constraints endogeneity robust; its asymptotic validity is proved and its accuracy in finite samples demonstrated by simulation. Next to offering an attractive alternative as such, it permits a sensitivity analysis of inference based on orthogonality conditions. Moreover, it yields statistical inference on the validity of exclusion restrictions regarding candidate external instruments, whereas these unavoidable restrictions were always supposed to be non-testable. The practical relevance is illustrated in a few applications borrowed from the textbook literature.