• Graduate Programs
    • Facilities
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Chen, A., Pelsser, A. and Vellekoop, M. (2011). Modeling non-monotone risk aversion using SAHARA utility functions Journal of Economic Theory, 146(5):2075--2092.


  • Journal
    Journal of Economic Theory

We develop a new class of utility functions, SAHARA utility, with the distinguishing feature that it allows absolute risk aversion to be non-monotone and implements the assumption that agents may become less risk averse for very low values of wealth. The class contains the well-known exponential and power utility functions as limiting cases. We investigate the optimal investment problem under SAHARA utility and derive the optimal strategies in an explicit form using dual optimization methods. We also show how SAHARA utility functions extend the class of contingent claims that can be valued using indifference pricing in incomplete markets.