• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • Course Registration
      • Facilities
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Laeven, R. and Stadje, M. (2013). Entropy coherent and entropy convex measures of risk Mathematics of Operations Research, 38(2):265--293.


  • Journal
    Mathematics of Operations Research

We introduce two subclasses of convex measures of risk, referred to as entropy coherent and entropy convex measures of risk. Entropy coherent and entropy convex measures of risk are special cases of φ-coherent and φ-convex measures of risk. Contrary to the classical use of coherent and convex measures of risk, which for a given probabilistic model entails evaluating a financial position by considering its expected loss, φ-coherent and φ-convex measures of risk evaluate a financial position under a given probabilistic model by considering its normalized expected φ-loss. We prove that (i) entropy coherent and entropy convex measures of risk are obtained by requiring φ-coherent and φ-convex measures of risk to be translation invariant; (ii) convex, entropy convex, and entropy coherent measures of risk emerge as certainty equivalents under variational, homothetic, and multiple priors preferences upon requiring the certainty equivalents to be translation invariant; and (iii) φ-convex measures of risk are certainty equivalents under variational and homothetic preferences if and only if they are convex and entropy convex measures of risk. In addition, we study the properties of entropy coherent and entropy convex measures of risk, derive their dual conjugate function, and characterize entropy coherent and entropy convex measures of risk in terms of properties of the corresponding acceptance sets.