• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • All Placement Records
      • PhD Vacancies
    • Facilities
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Creal, D., Schwaab, B., Koopman, S. and Lucas, A. (2014). Observation Driven Mixed-Measurement Dynamic Factor Models with an Application to Credit Risk Review of Economics and Statistics, 96(5):898--915.


  • Journal
    Review of Economics and Statistics

We propose an observation-driven dynamic factor model for mixed-measurement and mixed-frequency panel data. Time series observations may come from a range of families of distributions, be observed at different frequencies, have missing observations, and exhibit common dynamics and cross-sectional dependence due to shared dynamic latent factors. A feature of our model is that the likelihood function is known in closed form. This enables parameter estimation using standard maximum likelihood methods. We adopt the new framework for signal extraction and forecasting of macro, credit, and loss given default risk conditions for U.S. Moody's-rated firms from January 1982 to March 2010.