• Graduate program
    • Why Tinbergen Institute?
    • Research Master
    • Admissions
    • Course Registration
    • Facilities
    • PhD Vacancies
    • Selected PhD Placements
    • Research Master Business Data Science
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni

Koopman, S., Mallee, M. and van der Wel, M. (2010). Analyzing the term structure of interest rates using the dynamic Nelson-Siegel model with time-varying parameters Journal of Business and Economic Statistics, 28:329--343.


  • Journal
    Journal of Business and Economic Statistics

In this article we introduce time-varying parameters in the dynamic Nelson-Siegel yield curve model for the simultaneous analysis and forecasting of interest rates of different maturities. The Nelson-Siegel model has been recently reformulated as a dynamic factor model with vector autoregressive factors. We extend this framework in two directions. First, the factor loadings in the Nelson-Siegel yield model depend on a single loading parameter that we treat as the fourth latent factor. Second, we specify the overall volatility as a generalized autoregressive conditional heteroscedasticity (GARCH) process. We present empirical evidence of considerable increases in within-sample goodness of fit for these advances in the dynamic Nelson-Siegel model. {\textcopyright} 2010 American Statistical Association.