• Graduate program
    • Why Tinbergen Institute?
    • Program Structure
    • Courses
    • Course Registration
    • Facilities
    • Admissions
    • Recent PhD Placements
  • Research
  • News
  • Events
    • Summer School
      • Summer School
      • Behavioral Macro and Complexity
      • Climate Change
      • Econometrics and Data Science Methods for Business, Economics and Finance
    • Events Calendar
    • Tinbergen Institute Lectures
    • Annual Tinbergen Institute Conference
    • Events Archive
  • Alumni
  • Times

Dovonon, P., Hall, A. and Kleibergen, F. (2020). Inference in second-order identified models Journal of Econometrics, 218(2):346--372.

  • Journal
    Journal of Econometrics

We explore the local power properties of different test statistics for conducting inference in moment condition models that only identify the parameters locally to second order. We consider the conventional Wald and LM statistics, and also the Generalized Anderson–Rubin (GAR) statistic (Anderson and Rubin, 1949; Dufour, 1997; Staiger and Stock, 1997; Stock and Wright, 2000), KLM statistic (Kleibergen, 2002; Kleibergen, 2005) and the GMM extension of Moreira (2003) (GMM-M) conditional likelihood ratio statistic. The GAR, KLM and GMM-M statistics are so-called “identification robust” since their (conditional) limiting distribution is the same under first-order, weak and therefore also second order identification. For inference about the model specification, we consider the identification-robust J statistic (Kleibergen, 2005), and the GAR statistic. Interestingly, we find that the limiting distribution of the Wald statistic under local alternatives not only depends on the distance to the null hypothesis but also on the convergence rate of the Jacobian. We specifically analyse two empirically relevant models with second order identification. In the panel autoregressive model of order one, our analysis indicates that the Wald test of a unit root value of the autoregressive parameter has better power compared to the corresponding GAR test which, in turn, dominates the KLM, GMM-M and LM tests. For the conditionally heteroskedastic factor model, we compare Kleibergen (2005) J and the GAR statistics to Hansen (1982) overidentifying restrictions test (previously analysed in this context by Dovonon and Renault, 2013) and find the power ranking depends on the sample size. Collectively, our results suggest that tests with meaningful power can be conducted in second-order identified models.