• Graduate Programs
    • Facilities
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Konig, M., Hsieh, C. and Liu, X. (2022). A Structural Model for the Coevolution of Networks and Behavior Review of Economics and Statistics, 104(2):355--367.


  • Journal
    Review of Economics and Statistics

This paper introduces a structural model for the coevolution of networks and behavior. We characterize the equilibrium of the underlying game and adopt the Bayesian Double Metropolis-Hastings algorithm to estimate the model. We further extend the model to incorporate unobserved heterogeneity and show that ignoring unobserved heterogeneity can lead to biased estimates in simulation experiments. We apply the model to study R\&D investment and collaboration decisions in the chemical and pharmaceutical industry and find a positive knowledge spillover effect. Our model also provides a tractable framework for a long-run key player analysis.