• Graduate Programs
    • Facilities
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Karabiyik, H., Urbain, \.P. and Westerlund, J. (2019). CCE estimation of factor-augmented regression models with more factors than observables Journal of Applied Econometrics, 34(2):268--284.


  • Journal
    Journal of Applied Econometrics

This paper considers estimation of factor-augmented panel data regression models. One of the most popular approaches towards this end is the common correlated effects (CCE) estimator of Pesaran (Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica, 2006, 74, 967–1012, 2006). For the pooled version of this estimator to be consistent, either the number of observables must be larger than the number of unobserved common factors, or the factor loadings must be distributed independently of each other. This is a problem in the typical application involving only a small number of regressors and/or correlated loadings. The current paper proposes a simple extension to the CCE procedure by which both requirements can be relaxed. The CCE approach is based on taking the cross-section average of the observables as an estimator of the common factors. The idea put forth in the current paper is to consider not only the average but also other cross-section combinations. Asymptotic properties of the resulting combination-augmented CCE (C 3 E) estimator are provided and tested in small samples using both simulated and real data.