• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • PhD Vacancies
      • Selected PhD Placements
    • Facilities
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Boswijk, H. and Lucas, A. (2002). Semi-nonparametric cointegration testing Journal of Econometrics, 108(2):253--280.


  • Journal
    Journal of Econometrics

This paper considers a semi-nonparametric cointegration test. The test uses the LM-testing principle. The score function needed for the LM-test is estimated from the data using an expansion of the density around a Student t distribution. In this way, we capture both the possible fat-tailedness and the skewness of the innovation process. Using a Monte Carlo experiment, we show that the semi-nonparametric cointegration test has good size and power properties over a broad class of distributions for the innovation process. We also investigate the effect of order selection of the underlying VAR on inference. The complete methodology is illustrated using an interest rate example.