• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • Course Registration
      • PhD Vacancies
      • Selected PhD Placements
    • Facilities
    • Browse our Courses
    • Research Master Business Data Science
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Job Market Candidates
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Broda, S. and Paolella, M. (2009). CHICAGO: a fast and accurate method for portfilio risk calculation Journal of Financial Econometrics, 7(4):412--436.


  • Affiliated author
    Simon Broda
  • Publication year
    2009
  • Journal
    Journal of Financial Econometrics

This paper shows how independent component analysis can be used to estimate the generalized orthogonal GARCH model in a fraction of the time otherwise required. The proposed method is a two-step procedure, separating the estimation of the correlation structure from that of the univariate dynamics, thus facilitating the incorporation of non-Gaussian innovations distributions in a straightforward manner. The generalized hyperbolic distribution provides an excellent parametric description of financial returns data and is used for the univariate fits, but its convolutions, necessary for portfolio risk calculations, are intractable. This restriction is overcome by saddlepoint approximations for the Value at Risk and expected shortfall, which are computationally cheap and retain excellent accuracy far into the tails. It is further shown that the mean-expected shortfall portfolio optimization problem can be solved efficiently in the context of the model. A simulation study and an application to stock returns demonstrate the validity of the procedure. KEYWORDS: expected shortfall, multivariate GARCH, portfolio optimization, saddlepoint approximation, Value at Risk