• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • Course Registration
      • PhD Vacancies
      • Selected PhD Placements
    • Facilities
    • Browse our Courses
    • Research Master Business Data Science
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Job Market Candidates
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Cakmakli, \.(. and \van Dijk\, D. (2016). Getting the most out of macroeconomics information for predicting excess stock returns International Journal of Forecasting, 32(1):650--668.


  • Affiliated authors
    Cem Cakmakli, Dick van Dijk
  • Publication year
    2016
  • Journal
    International Journal of Forecasting

This paper documents the fact that the factors extracted from a large set of macroeconomic variables contain information that can be useful for predicting monthly US excess stock returns over the period 1975–2014. Factor-augmented predictive regression models improve upon benchmark models that include only valuation ratios and interest rate related variables, and possibly individual macro variables, as well as the historical average excess return. The improvements in out-of-sample forecast accuracy are significant, both statistically and economically. The factor-augmented predictive regressions have superior market timing abilities, such that a mean–variance investor would be willing to pay an annual performance fee of several hundreds of basis points to switch from the predictions offered by the benchmark models to those of the factor-augmented models. One important reason for the superior performance of the factor-augmented predictive regressions is the stability of their forecast accuracy, whereas the benchmark models suffer from a forecast breakdown during the 1990s.