• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • Course Registration
      • PhD Vacancies
      • Selected PhD Placements
    • Facilities
    • Browse our Courses
    • Research Master Business Data Science
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Job Market Candidates
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Bun, M. and Kiviet, J. (2006). The Effects of Dynamic Feedbacks on LS and MM Estimator Accuracy in Panel Data Models Journal of Econometrics, 132(2):409--444.


  • Affiliated author
    Jan Kiviet
  • Publication year
    2006
  • Journal
    Journal of Econometrics

The finite sample behavior is analyzed of particular least squares (LS) and a range of (generalized) method of moments (MM) estimators in panel data models with individual effects and both a lagged dependent variable regressor and another explanatory variable. The latter may be affected by lagged feedbacks from the dependent variable too. Asymptotic expansions indicate how the order of magnitude of bias of MM estimators tends to increase with the number of moment conditions exploited. They also provide analytic evidence on how the bias of the various estimators depends on the feedbacks and on other model characteristics such as prominence of individual effects and correlation between observed and unobserved heterogeneity. Simulation results corroborate the theoretical findings and reveal that in small samples of models with dynamic feedbacks none of the techniques examined dominates regarding bias and mean squared error over all parametrizations examined. Keywords: Asymptotic expansions; Bias approximation; Dynamic panel data model; Feedback mechanisms; Monte Carlo simulation JEL classification codes: C13; C23