• Graduate program
  • Research
  • Summer School
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From preference to choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
  • Magazine

Koopman, S., Lucas, A. and Schwaab, B. (2012). Dynamic Factor Models With Macro, Frailty and Industry Effects for U.S. Default Counts: The Credit Crisis of 2008 Journal of Business and Economic Statistics, 30(4):521--532.


  • Affiliated authors
    Siem Jan Koopman, Andre Lucas, Bernd Schwaab
  • Publication year
    2012
  • Journal
    Journal of Business and Economic Statistics

We develop a high-dimensional, nonlinear, and non-Gaussian dynamic factor model for the decomposition of systematic default risk conditions into latent components for (1) macroeconomic/financial risk, (2) autonomous default dynamics (frailty), and (3) industry-specific effects. We analyze discrete U.S. corporate default counts together with macroeconomic and financial variables in one unifying framework. We find that approximately 35% of default rate variation is due to systematic and industry factors. Approximately one-third of this systematic variation is captured by the macroeconomic and financial factors. The remainder is captured by frailty (40%) and industry (25%) effects. The default-specific effects are particularly relevant before and during times of financial turbulence. We detect a build-up of systematic risk over the period preceding the 2008 credit crisis. This article has online supplementary material. {\textcopyright} 2012 American Statistical Association.