• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • All Placement Records
      • PhD Vacancies
    • Facilities
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

\de Vries\, C. and Sun, P. (2018). Exploiting tail shape biases to discriminate between stable and student t alternatives. Journal of Applied Econometrics, 33(5):708--726.


  • Affiliated author
    Casper de Vries
  • Publication year
    2018
  • Journal
    Journal of Applied Econometrics

The nonnormal stable laws and Student t distributions are used to model the unconditional distribution of financial asset returns, as both models display heavy tails. The relevance of the two models is subject to debate because empirical estimates of the tail shape conditional on either model give conflicting signals. This stems from opposing bias terms. We exploit the biases to discriminate between the two distributions. A sign estimator for the second-order scale parameter strengthens our results. Tail estimates based on asset return data match the bias induced by finite-variance unconditional Student t data and the generalized autoregressive conditional heteroscedasticity process.