• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • Course Registration
      • PhD Vacancies
      • Selected PhD Placements
    • Facilities
    • Browse our Courses
    • Research Master Business Data Science
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Job Market Candidates
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Guggenberger, P., Kleibergen, F. and Mavroeidis, S. (2019). A more powerful subvector Anderson Rubin test in linear instrumental variables regression Quantitative Economics, 10(2):487--526.


  • Journal
    Quantitative Economics

We study subvector inference in the linear instrumental variables model assuming homoskedasticity but allowing for weak instruments. The subvector Anderson and Rubin (1949) test that uses chi square critical values with degrees of freedom reduced by the number of parameters not under test, proposed by Guggenberger, Kleibergen, Mavroeidis, and Chen (2012), controls size but is generally conservative. We propose a conditional subvector Anderson and Rubin test that uses data‐dependent critical values that adapt to the strength of identification of the parameters not under test. This test has correct size and strictly higher power than the subvector Anderson and Rubin test by Guggenberger et al. (2012). We provide tables with conditional critical values so that the new test is quick and easy to use. Application of our method to a model of risk preferences in development economics shows that it can strengthen empirical conclusions in practice.