• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • Course Registration
      • Facilities
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Heidergott, B. and Leahu, H. (2010). Weak differentiability of product measures Mathematics of Operations Research, 35:27--51.


  • Journal
    Mathematics of Operations Research

In this paper, we study cost functions over a finite collection of random variables. For these types of models, a calculus of differentiation is developed that allows us to obtain a closed-form expression for derivatives where 'differentiation' has to be understood in the weak sense. The technique for proving the results is new and establishes an interesting link between functional analysis and gradient estimation. The key contribution of this paper is a product rule of weak differentiation. In addition, a product rule of weak analyticity is presented that allows for Taylor series approximations of finite products measures. In particular, from characteristics of the individual probability measures, a lower bound (i.e., domain of convergence) can be established for the set of parameter values for which the Taylor series converges to the true value. Applications of our theory to the ruin problem from insurance mathematics and to stochastic activity networks arising in project evaluation review techniques are provided. {\textcopyright} 2010 INFORMS.