• Graduate Programs
    • Facilities
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • PhD Vacancies
      • Selected PhD Placements
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

\van den Brink\, J.R. (2007). Null or Nullifying Players: The Difference between the Shapley Value and Equal Division Solutions Journal of Economic Theory, 136:767--775.


  • Journal
    Journal of Economic Theory

A famous solution for cooperative transferable utility games is the Shapley value. Most axiomatic characterizations of this value use some axiom related to null players, i.e. players who contribute zero to any coalition. We show that replacing null players with nullifying players characterizes the equal division solution distributing the worth of the 'grand coalition' equally among all players. A player is nullifying if every coalition containing this player earns zero worth. Using invariance we provide similar characterizations of the equal surplus division solution assigning to every player its own worth, and distributing the remaining surplus equally among all players. {\textcopyright} 2006 Elsevier Inc. All rights reserved.