• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • PhD Vacancies
      • Selected PhD Placements
    • Facilities
    • Research Master Business Data Science
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Marketing Research with Purpose
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Job Market Candidates
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

Hoek, H., Lucas, A. and \van Dijk\, \HermanK.\ (1995). Classical and Bayesian aspects of robust unit root inference Journal of Econometrics, 69(1):27--59.


  • Affiliated authors
    Herman van Dijk, Henk Hoek, Andre Lucas
  • Publication year
    1995
  • Journal
    Journal of Econometrics

This paper has two themes. First, we classify some effects which outliers in the data have on unit root inference. We show that, both in a classical and a Bayesian framework, the presence of additive outliers moves 'standard' inference towards stationarity. Second, we base inference on an independent Student-t instead of a Gaussian likelihood. This yields results that are less sensitive to the presence of outliers. Application to several time series with outliers reveals a negative correlation between the unit root and degrees of freedom parameter of the Student-t distribution. Therefore, imposing normality may incorrectly provide evidence against the unit root.