• Graduate program
  • Research
  • Summer School
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Gender in Society
      • Machine Learning for Business
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 16th Tinbergen Institute Annual Conference
    • Annual Tinbergen Institute Conference
  • News
  • Alumni
  • Magazine

Opschoor, A., Van Dijk, D. and van der Wel, M. (2017). Combining density forecasts using focused scoring rules Journal of Applied Econometrics, 32(7):1298--1313.


  • Journal
    Journal of Applied Econometrics

We investigate the added value of combining density forecasts focused on a specific region of support. We develop forecast combination schemes that assign weights to individual predictive densities based on the censored likelihood scoring rule and the continuous ranked probability scoring rule (CRPS) and compare these to weighting schemes based on the log score and the equally weighted scheme. We apply this approach in the context of measuring downside risk in equity markets using recently developed volatility models, including HEAVY, realized GARCH and GAS models, applied to daily returns on the S&P 500, DJIA, FTSE and Nikkei indexes from 2000 until 2013. The results show that combined density forecasts based on optimizing the censored likelihood scoring rule significantly outperform pooling based on equal weights, optimizing the CRPS or log scoring rule. In addition, 99% Value-at-Risk estimates improve when weights are based on the censored likelihood scoring rule.