• Graduate Programs
    • Tinbergen Institute Research Master in Economics
      • Why Tinbergen Institute?
      • Research Master
      • Admissions
      • All Placement Records
      • PhD Vacancies
    • Facilities
    • Research Master Business Data Science
    • Education for external participants
    • Summer School
    • Tinbergen Institute Lectures
    • PhD Vacancies
  • Research
  • Browse our Courses
  • Events
    • Summer School
      • Applied Public Policy Evaluation
      • Deep Learning
      • Development Economics
      • Economics of Blockchain and Digital Currencies
      • Economics of Climate Change
      • The Economics of Crime
      • Foundations of Machine Learning with Applications in Python
      • From Preference to Choice: The Economic Theory of Decision-Making
      • Inequalities in Health and Healthcare
      • Marketing Research with Purpose
      • Markets with Frictions
      • Modern Toolbox for Spatial and Functional Data
      • Sustainable Finance
      • Tuition Fees and Payment
      • Business Data Science Summer School Program
    • Events Calendar
    • Events Archive
    • Tinbergen Institute Lectures
    • 2026 Tinbergen Institute Opening Conference
    • Annual Tinbergen Institute Conference
  • News
  • Summer School
  • Alumni
    • PhD Theses
    • Master Theses
    • Selected PhD Placements
    • Key alumni publications
    • Alumni Community

\van de Kuilen\, G. and Wakker, P. (2011). The Midweight Method to Measure Attitudes towards Risk and Ambiguity Management Science, 57(3):582--598.


  • Affiliated authors
    Gijs van de Kuilen, Peter Wakker
  • Publication year
    2011
  • Journal
    Management Science

This paper introduces a parameter-free method for measuring the weighting functions of prospect theory and rank-dependent utility. These weighting functions capture risk attitudes, subjective beliefs, and ambiguity attitudes. Our method, called the midweight method, is based on a convenient way to obtain midpoints in the weighting function scale. It can be used both for risk (known probabilities) and for uncertainty (unknown probabilities). The resulting integrated treatment of risk and uncertainty is particularly useful for measuring ambiguity, i.e., the difference between uncertainty and risk. Compared to existing methods to measure weighting functions and attitudes toward uncertainty and ambiguity, our method is more efficient and can accommodate violations of expected utility under risk. An experiment demonstrates the tractability of our method, yielding plausible results such as ambiguity aversion for moderate and high likelihoods but ambiguity seeking for low likelihoods, as predicted by Ellsberg.